

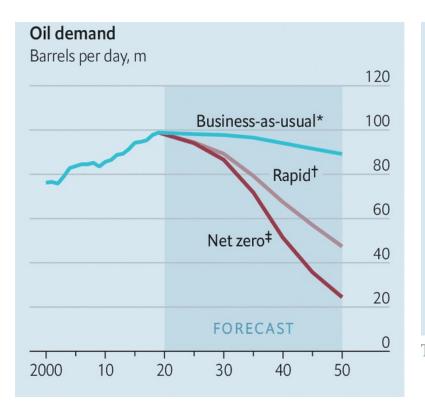
On representative day selection for capacity expansion planning of power systems under extreme events

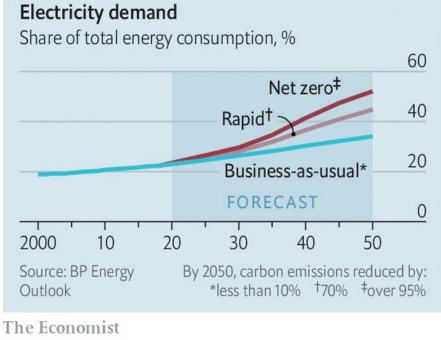
Can Li^a, Antonio J. Conejo^b, John D. Siirola^c, Ignacio E. Grossmann^a

a Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

b Department of Integrated Systems Engineering, The Ohio State University, 1971 Neil Avenue, Columbus, OH 43210,USA

c Center for Computing Research, Sandia National Laboratories, P.O. 5800, Albuquerque, NM, 87185, USA Electricity demand would account for over 50% of total energy demand if we were to achieve net zero carbon emission in 2050





BP Energy Outlook 2020

Project Motivation

Goal: Develop Optimization Models for Power Generation and Transmission Expansion Planning *(multiperiod MILP)*

Consider major generation sources:

- coal
- natural gas (simple and combined cycle)
- nuclear
- wind
- solar

Emphasis: Long term Planning to Minimize Total Cost

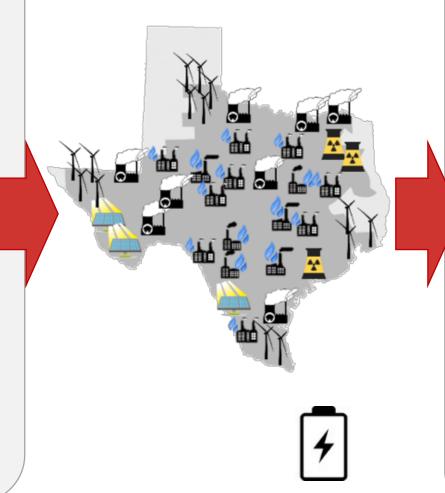
Generation Transmission Expansion Planning + Unit Commitment

INPUT

- Energy source (coal, natural gas, nuclear, solar, wind*);
- Generation and storage technology;
- Location of existing generators;
- Nameplate capacity;
- Age and expected lifetime
- Potential transmission lines
- Emissions
- Operating and investment costs
- Ramping rates, operating limits, maximum operating reserve.
- Renewable generation profile.
- Load demand

Minimize the net present cost (operating,

investment, and environmental).



OUTPUT

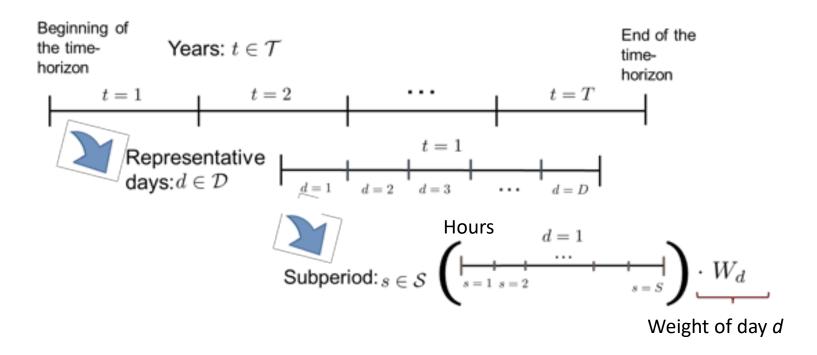
- Location, year, type and number of generators, transmission lines and storage units to install;
- When to retire them;
- Whether or not to extend their lifetime;
- Approximate power flow between locations;
- Approximate operating schedule

- Temporal complexity: 20 years × 365days × 24hours=175,200 hours
- Spatial complexity: Around 500-2,000 individual generators depending on the region
- Complexity of the optimization problem with hourly decisions can be easily over 1 billion variables.

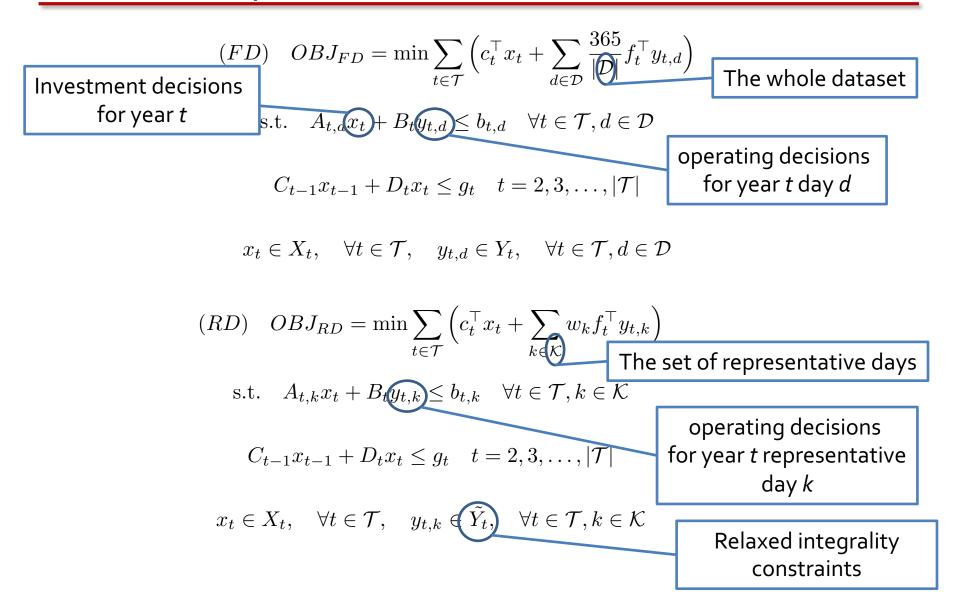
Intractable. Need simplification

Representative Day Selection

- Motivation: Expansion planning decisions sensitive to the selection of representative days
 - Algorithms to select the representative days
 - Estimation of "optimality gap"



Fullspace model and Reduced model



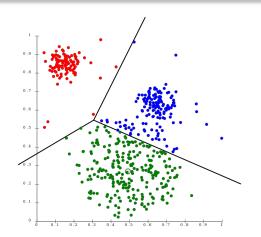
K-means clustering

> **Objective:** minimize the within cluster variance.

$$\mathbf{S}^* = \arg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||^2$$

MINLP formulation:

$$\min_{\mathbf{c},\mathbf{d},\mathbf{y}} \sum_{i=1}^{n} d_i$$

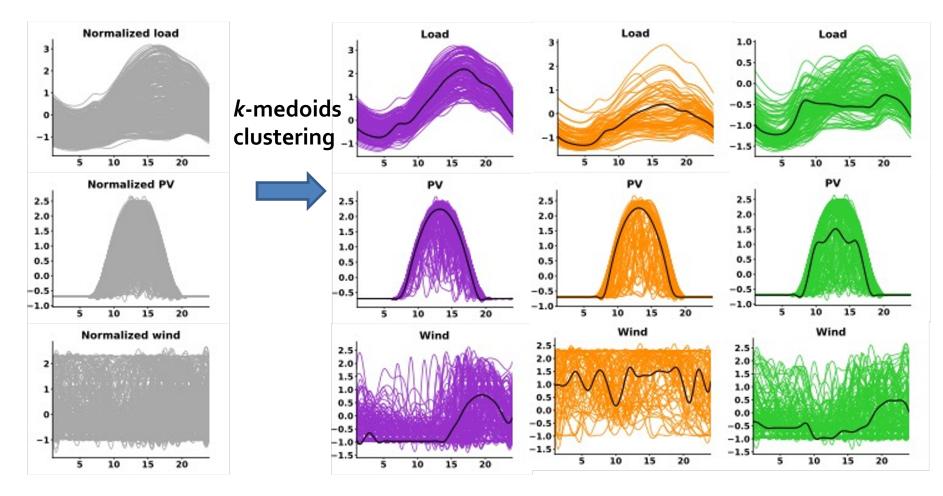


$$d_i \ge \left(\sum_{j=1}^{D} (x_{ij} - c_{lj})^2\right) - M_i(1 - y_{il}) \quad \forall i \in \{1, \dots, n\}, l \in \{1, \dots, k\}$$

$$\sum_{l=1}^{k} y_{il} = 1 \quad \forall i \in \{1, \dots, n\}$$
$$\mathbf{c}_{l} \in \mathbb{R}^{D} \quad \forall l \in \{1, \dots, k\}$$
$$d_{i} \in \mathbb{R}_{+} \quad \forall i \in \{1, \dots, n\}$$
$$y_{il} \in \{0, 1\} \quad \forall i \in \{1, \dots, n\}, l \in \{1, \dots, k\}$$

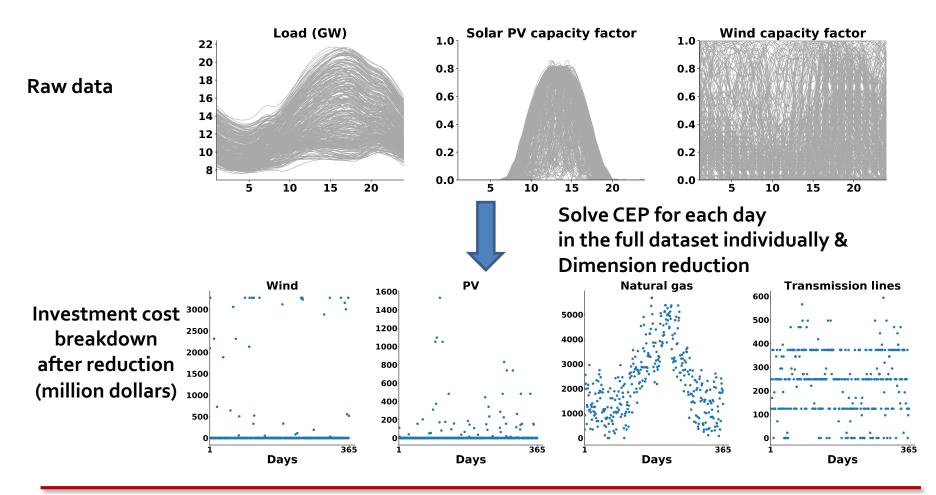
Input-based method

Clustering is performed directly on the input data (load, capacity factors)

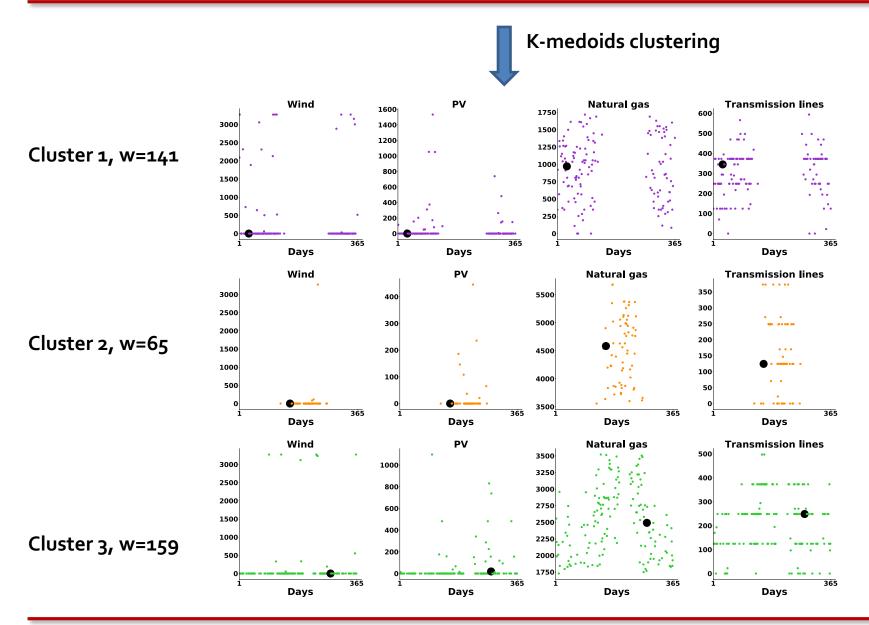


Cost-based method

Hypothesis: The days with similar optimal investment decisions, i.e., the days that need similar generators, transmission lines, and storage units, are similar and should be assigned to the same cluster

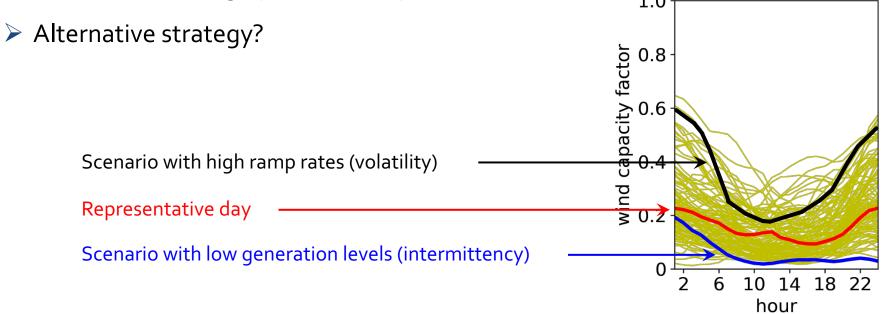


Cost-based method



Failures of the Representative Day Approach

- Extreme events, such as highest ramp and lowest generation, are not captured by the representative days.
- > The investment decisions from (RD) are usually infeasible for (FD).
- Solution: adding days with extreme events
- Option 1: adding extreme days based on some predefined characteristics, e.g., peak load day.
 1.0



Load shedding cost

Energy balance at each node

Min Load shedding

$$\sum_{i} \left(p_{i,r,t,d,s} \right) + \sum_{l|r(l)=r} p_{l,t,d,s}^{\text{flow}} - \sum_{l|s(l)=r} p_{l,t,d,s}^{\text{flow}} + \sum_{j} p_{j,r,t,d,s}^{\text{discharge}} - \sum_{j} p_{j,r,t,d,s}^{\text{charge}} = L_{r,t,d,s}$$

Power generation \pm power flow in/out \pm power discharge/charge = Load

Power generation ± power flow in/out ± power discharge/charge = Load – Load shedding

- 1) Fix the investment decisions from (RD)
- 2) Solve the operating problem corresponding to each day in our dataset
- 3) Find the infeasible day with the highest load shedding cost

Extreme Events Selection

> Highest cost

- In the cost-based approach, we have obtained the total cost (operating + investment) for each day in our dataset
- Select the day with the highest cost as our extreme day

Optimality Gap

Motivation: Provide upper and lower bound for the fullspace problem (FD)

Upper bound: Fix the optimal investment decisions from the reduced model, solve each day in the fullspace model.

 $OBJ_{FD}(\mathbf{x}^{RD}) \ge OBJ_{FD}(\mathbf{x}^{FD}) = OBJ_{FD}$

Lower bound: Reduced model provides lower bound under certain assumptions.

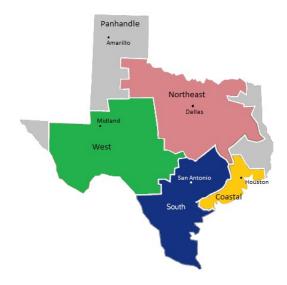
Theorem 1. For both cost-based and input-based approaches, if k-means clustering is used, (RD) provides a lower bound for the optimal objective value of (FD), i.e., $OBJ_{RD} \leq OBJ_{FD}$. This lower bound holds before and after adding extreme days.

$$\texttt{Gap} = \frac{OBJ_{FD}(\mathbf{x}^{RD}) - OBJ_{RD}}{OBJ_{FD}(\mathbf{x}^{RD})} \times 100\%$$

Case Study

- > ERCOT region, 5 years planning problem
- > The whole dataset *D* has 365 days that consists

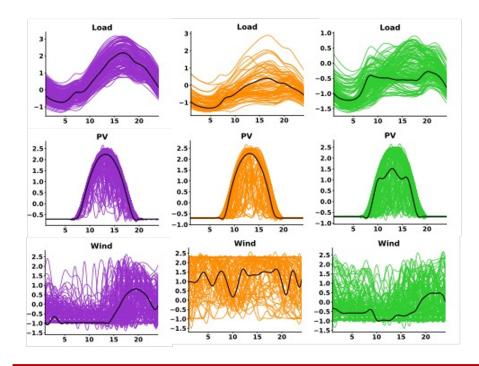
of load and capacity factor data



Algorithm option	Data	Clustering Algorithm	Extreme Day Method
1	Input	k-means	load shedding cost
2	Input	k-medoids	load shedding cost
3	Cost	k-medoids	highest cost
4	Cost	k-medoids	load shedding cost
5	Cost	k-means	highest cost
6	Cost	k-means	load shedding cost

Infeasibility without the Extreme Days

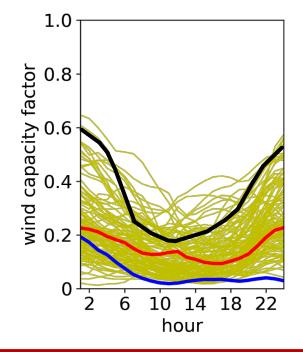
- Only using the representative days from centroids/medoids of the clustering algorithms cannot guarantee feasibility
- Cost-based approach has fewer infeasible days when k is large



Algorithm option	k	#infeasible day
	5	70
1	10	63
	15	42
	5	35
2	10	21
	15	40
	5	98
3	10	13
	15	12
	5	98
4	10	13
	15	12
	5	34
5	10	30
	15	29
	5	34
6	10	30
	15	29

Feasible After Adding Extreme Days

- ➤ Adding the extreme days makes the investment decisions feasible for the fullspace problem. OBJ_{FD}(xRD) < +∞</p>
- K-medoids clustering has lower cost in most cases



Option	k	#Extreme day	$OBJ_{FD}($
	5	3	79.16
1	10	2	79.04
	15	2	78.81
2	5	3	78.92
	10	2	78.72
	15	2	78.74
3	5	5	78.83
	10	3	78.67
	15	3	78.81
4	5	3	78.93
	10	2	78.79
	15	1	78.75
5	5	4	78.98
	10	6	79.09
	15	4	78.98
6	5	3	79.12
	10	4	78.93
	15	3	78.81

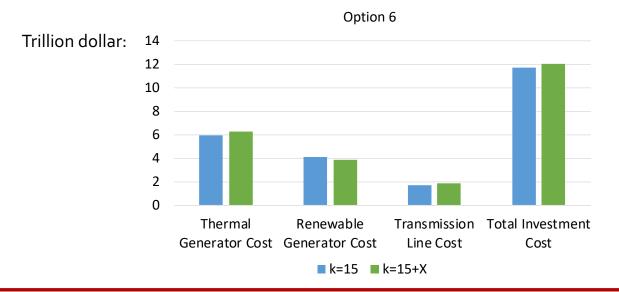
Optimality Gap

- "Optimality gap" can be obtained when k-means clustering is used
- > Gap improves as *k* increases

Option	k	$OBJ_{FD}(\mathbf{x}^{RD})$	^D) LB	Gap
1	5	79.16	76.09	4.0%
	10	79.04	76.29	3.6%
	15	78.81	76.58	2.9%
2	5	78.92	-	-
	10	78.72	-	-
	15	78.74	-	-
3	5	78.83	-	-
	10	78.67	-	-
	15	78.81	-	-
4	5	78.93	-	-
	10	78.79	-	-
	15	78.75	-	-
5	5	78.98	76.16	4.2%
	10	79.09	76.64	3.7%
	15	78.98	76.74	3.4%
6	5	79.12	76.15	3.9%
	10	78.93	76.63	3.0%
	15	78.81	76.73	2.7%

Effects of Adding Extreme days

- Comparison of k=15, option 6 before and after adding the extreme days
 - Total investment cost +325 million
 - Thermal generator cost +350 million
 - Transmission line cost +186 million
 - Storage investment cost +0.2 million
 - Renewable generator cost -212 million



Conclusion and Future work

- We have developed models and algorithms for capacity expansion of power systems with high penetration of renewables.
- The capability to analyze powers systems enables to study hybrid energy systems that have both electricity generators and electricity/heat consumers, such as chemical plants.