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Energy Transition from Oil to Electricity

Ø Electricity demand would account for over 50% of total energy demand if we
were to achieve net zero carbon emission in 2050

BP Energy Outlook 2020



Project Motivation

Consider major generation sources:

– coal

– natural gas (simple and combined cycle)

– nuclear

– wind

– solar
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Goal: Develop Optimization Models for Power Generation  
and Transmission Expansion Planning  (multiperiod MILP)

Emphasis: Long term Planning to Minimize Total Cost
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Generation Transmission Expansion Planning + Unit Commitment 

INPUT

• Energy source (coal,
natural gas, nuclear,
solar, wind*);

• Generation and storage
technology;

• Location of existing 
generators;

• Nameplate capacity;
• Age and expected 

lifetime
• Potential transmission 

lines
• Emissions
• Operating and 

investment costs
• Ramping rates, 

operating limits, 
maximum operating 
reserve.

• Renewable generation 
profile.

• Load demand

OUTPUT

• Location, year, 
type and number
of generators, 
transmission lines
and storage units 
to install; 

• When to retire 
them;

• Whether or not to 
extend their 
lifetime; 

• Approximate 
power flow 
between 
locations; 

• Approximate 
operating 
schedule 

Minimize the net present cost (operating, 
investment, and environmental).
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Research Challenges

Ø Temporal complexity: 20 years× 365days× 24hours=175,200 hours

Ø Spatial complexity: Around 500-2,000 individual generators depending on 
the region

Ø Complexity of the optimization problem with hourly decisions can be easily 
over 1 billion variables.

Intractable. Need simplification
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Representative Day Selection

Hours

Ø Motivation: Expansion planning decisions sensitive to the selection of

representative days

§ Algorithms to select the representative days

§ Estimation of “optimality gap”

Weight of day d
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Fullspace model and Reduced model
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Investment decisions
for year t

operating decisions
for year t day d

The whole dataset

operating decisions
for year t representative

day k

The set of representative days

Relaxed integrality
constraints



8

K-means clustering

Ø Objective: minimize the within cluster variance.

S⇤ = argmin
S

kX

i=1

X

x2Si

||x� µi||2 (1)

min
c,d,y

nX

i=1

di (1a)
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⇣ DX
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2
⌘
�Mi(1� yil) 8i 2 {1, . . . , n}, l 2 {1, . . . , k} (1b)

kX

l=1

yil = 1 8i 2 {1, . . . , n} (1c)

cl 2 RD 8l 2 {1, . . . , k} (1d)

di 2 R+ 8i 2 {1, . . . , n} (1e)

yil 2 {0, 1} 8i 2 {1, . . . , n}, l 2 {1, . . . , k} (1f)

MINLP formulation:
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k-medoids
clustering

Input-based method

Ø Clustering is performed directly on the input data (load, capacity 

factors)
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Cost-based method
Ø Hypothesis: The days with similar optimal investment decisions, i.e., the days that 

need similar generators, transmission lines, and storage units, are similar and should be 

assigned to the same cluster

Raw data

Investment cost 
breakdown

after reduction 
(million dollars)

Solve CEP for each day 
in the full dataset individually &
Dimension reduction 
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Cluster 1, w=141

Cluster 2, w=65

Cluster 3, w=159

Cost-based method

K-medoids clustering
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Failures of the Representative Day Approach

Ø Extreme events, such as highest ramp and lowest generation, are not 

captured by the representative days.

Ø The investment decisions from (RD) are usually infeasible for (FD).

Ø Solution: adding days with extreme events

Ø Option 1: adding extreme days based on some predefined 

characteristics, e.g., peak load day.

Ø Alternative strategy?

Scenario with high ramp rates (volatility) 

Representative day

Scenario with low generation levels (intermittency)
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Extreme Events Selection

Ø Load shedding cost

Energy balance at each node

X

i

(pi,r,t,d,s) +
X

l|r(l)=r

pflowl,t,d,s �
X

l|s(l)=r

pflowl,t,d,s +
X

j

pdischargej,r,t,d,s �
X

j

pchargej,r,t,d,s = Lr,t,d,s

Power generation ± power flow in/out ± power discharge/charge = Load

Power generation ± power flow in/out ± power discharge/charge = Load – Load shedding

1) Fix the investment decisions from (RD)
2) Solve the operating problem corresponding to each day in our dataset
3) Find the infeasible day with the highest load shedding cost

Min Load shedding
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Extreme Events Selection

Ø Highest cost

§ In the cost-based approach, we have obtained the total cost 

(operating + investment) for each day in our dataset

§ Select the day with the highest cost as our extreme day
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Optimality Gap

Ø Motivation: Provide upper and lower bound for the fullspace problem (FD)

Ø Upper bound: Fix the optimal investment decisions from the reduced 

model, solve each day in the fullspace model.

OBJFD(xRD) � OBJFD(xFD) = OBJFD (1)

Theorem 1. For both cost-based and input-based approaches, if k-means clus-

tering is used, (RD) provides a lower bound for the optimal objective value of

(FD), i.e., OBJRD  OBJFD. This lower bound holds before and after adding

extreme days.

Gap =
OBJFD(xRD)�OBJRD

OBJFD(xRD)
⇥ 100% (1)

Ø Lower bound: Reduced model provides lower bound under certain 

assumptions.
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Case Study

Algorithm option Data Clustering Algorithm Extreme Day Method
1 Input k-means load shedding cost
2 Input k-medoids load shedding cost
3 Cost k-medoids highest cost
4 Cost k-medoids load shedding cost
5 Cost k-means highest cost
6 Cost k-means load shedding cost

Ø ERCOT region, 5 years planning problem

Ø The whole dataset D has 365 days that consists 

of load and capacity factor data
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Infeasibility without the Extreme Days

Ø Only using the representative days from 

centroids/medoids of the clustering 

algorithms cannot guarantee feasibility

Ø Cost-based approach has fewer infeasible 

days when k is large

Algorithm option k #infeasible day

1
5 70

10 63
15 42

2
5 35

10 21
15 40

3
5 98

10 13
15 12

4
5 98

10 13
15 12

5
5 34

10 30
15 29

6
5 34

10 30
15 29
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Feasible After Adding Extreme Days

Option k #Extreme day

1
5 3 79.16

10 2 79.04
15 2 78.81

2
5 3 78.92

10 2 78.72
15 2 78.74

3
5 5 78.83

10 3 78.67
15 3 78.81

4
5 3 78.93

10 2 78.79
15 1 78.75

5
5 4 78.98

10 6 79.09
15 4 78.98

6
5 3 79.12

10 4 78.93
15 3 78.81

Ø Adding the extreme days makes the 

investment decisions feasible for the 

fullspace problem.

Ø K-medoids clustering has lower cost in 

most cases

OBJFD(xRD) < +1

OBJFD(xRD)
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Optimality Gap

Ø “Optimality gap” can be 

obtained when k-means 

clustering is used

Ø Gap improves as k increases

Option k LB Gap

1
5 79.16 76.09 4.0%

10 79.04 76.29 3.6%
15 78.81 76.58 2.9%

2
5 78.92 - -

10 78.72 - -
15 78.74 - -

3
5 78.83 - -

10 78.67 - -
15 78.81 - -

4
5 78.93 - -

10 78.79 - -
15 78.75 - -

5
5 78.98 76.16 4.2%

10 79.09 76.64 3.7%
15 78.98 76.74 3.4%

6
5 79.12 76.15 3.9%

10 78.93 76.63 3.0%
15 78.81 76.73 2.7%

OBJFD(xRD)
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Effects of Adding Extreme days

Ø Comparison of k=15, option 6 before and after adding the extreme days

§ Total investment cost +325 million

§ Thermal generator cost +350 million

§ Transmission line cost +186 million

§ Storage investment cost +0.2 million

§ Renewable generator cost -212 million

0
2
4
6
8

10
12
14

Thermal
Generator Cost

Renewable
Generator Cost

Transmission
Line Cost

Total Investment
Cost

Option 6

k=15 k=15+X

Trillion dollar:
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Conclusion and Future work

Ø We have developed models and algorithms for capacity expansion of 
power systems with high penetration of renewables.

Ø The capability to analyze powers systems enables to study hybrid energy 
systems that have both electricity generators and electricity/heat 
consumers, such as chemical plants.


