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Motivation

Ø Shale gas production expected to increase by almost 50%

Ø Shale gas production will satisfy vast majority of the expected total 
natural gas demand going forward

Ø Determine profitable method of shale gas development
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From Annual Energy Outlook 2019 
by U.S. Energy Information Administration

0

10

20

30

40

50

60

2000 2010 2020 2030 2040 2050

Dry natural gas production by type
trillion cubic feet

Reference

tight/shale 
gas
other
Lower 
48 
onshore
lower 48 
offshore
other

2018
history   projections

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

2000 2010 2020 2030 2040 2050

Natural gas consumption
trillion cubic feet

2018
history projections High Oil and 

Gas Resource 
and Technology
High Oil Price
High Economic 
Growth
Reference
Low Economic
Growth
Low Oil Price
Low Oil and 
Gas Resource 
and Technology

billion cubic feet per day

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

2000 2010 2020 2030 2040 2050

Dry natural gas production
trillion cubic feet billion cubic feet per day

2018
history projections



Motivation

Ø Shale gas production expected to increase by almost 50%

Ø Shale gas production will satisfy vast majority of the expected total dry 
natural gas demand going forward

Ø Determine profitable method of shale gas development

Ø We need to hedge against uncertainty in natural gas price
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Literature
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Ø Deterministic shale gas models

• Ondeck et al. (2019), Cafaro and Grossmann (2014), Drouven and 
Grossmann (2016), Guerra et al. (2016), Gao and You (2015), 
Arredondo-Ramírez et al.(2016), Yang et al. (2014), Forouzanfar and 
Reynolds (2014) …

Ø Stochastic shale gas models

• Gao and You (2015), Guerra et al. (2019), Zeng and Cremaschi (2017) …



Fixed Sequence of Well Operations
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Fixed Sequence of Well Operations
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Ø Drill and encase a well down 
to the targeted shale region

Ø Continue drilling the well 
horizontally in the targeted 
shale region

Ø In stages, apply pressure using a 
water-based solution to create 
fissures in the shale

Ø Open up the well to produce gas



Problem Statement & Assumptions

Ø Given a single shale gas well pad with given prospective wells

Ø Fixed planning horizon (discrete time representation)

Ø At most one operation can be done at given time

Ø Mobilization costs and operational costs are considered

Ø Gas curtailment/storage is allowed
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Ondeck et al. (2019)



Output from the Optimization Model

Ø Given a single shale gas well pad with given prospective wells

Ø Fixed planning horizon (discrete time representation)

Ø At most one operation can be done at given time

Ø Mobilization costs and operational costs are considered

Ø Gas curtailment/storage is allowed
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Ø Schedule of operations on the single pad generated with MILP model

Wells Operations
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Sequence of operations. 

Mobilization costs

Production

Operating costs

Storage constraints

Revenues

Objective: Maximize NPV



Hedge Against Uncertainty
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Ø We need to hedge against uncertainty in natural gas price



Stochastic Programming

Ø Stochastic programming is a framework 
for modeling optimization problems that involve uncertainty

Ø Uncertainty can be characterized by probability distributions known a priori
q Continuous distributions

Ø Each realization of uncertainty parameters is called a scenario
Ø Optimize the expected value of the objective over all possible scenarios
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Two Stage Stochastic Programming

t = 1 t = 2

Decision Resolution of 
uncertainty

Recourse action

Ø First stage decisions: Here and now

Ø Second stage decisions: Wait and see, Recourse decisions
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Two Stage with Price Uncertainty
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Price: dollars per million Btu

Ø Input data: Single well pad, 9 wells

• All the wells are permitted at time 0

Ø Stage one: week 1-week 20

Ø Stage two: week 21-week 45

Ø Price remains constant outside the planning 
horizon

Solve the expected value problem, i.e., fix the price at 1.5

due to production/storage 
capacity constraints

Fix the first stage decisions and see 
how it performs in different scenarios



Expected Value Solution
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Expected value solution when price = 0.2

Expected value solution when price = 1.5

Expected value solution when price = 2.8

Only complete all the wells 
when the price is profitable



Two Stage Stochastic Solution
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Stochastic solution when price=0.2

Stochastic solution when price=1.5

Stochastic solution when price=2.8

Delay the operations to stage two

In stage  1, frac 2 wells less than 
expected value solution



Scenario Price NPV(Expected value) NPV(Stochastic Solution)
1 0.2 -24.28 -7.74
2 1.5 71.45 70.86
3 2.8 182.58 178.48

Comparison of Stochastic & Expected Value Problem
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(million dollars)

Expected value solution performs poorly when price is too low

Expected results of using the expected value solution EEV = 76.07
Recourse problem RP = 79.61

Value of stochastic solution VSS = 3.54

Binary var Total Var Constraints Walltime gap
Deterministic 3,655 4,522 4,524 19 min 0.01%

Stochastic 9,963 11,822 12,828 12 hrs 2.41%



Two Stage with Price Uncertainty
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Price: dollars per million Btu

Ø Input data: McNeely. 9 wells

• All the wells can start at the beginning

Ø Stage one: week 1-week 20

Ø Stage two: week 21-week 45

Ø Price remains constant outside the planning 
horizon

No value in using stochastic programming



Two Stage with Forecast Prices
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Ø Input data: McNeely. 9 wells

• All the wells can start at the beginning

Ø Price comes from forecast using ARIMA
(autoregressive integrated moving average)
model

Ø Stage one: week 1-week 20

Ø Stage two: week 21-week 45
No value in using stochastic programming



Three Stage with Price Uncertainty
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Ø Stage one: week 1-week 16

Ø Stage two: week 17-week 32

Ø Stage three: week 33-week 48

Ø Price remains constant outside the planning horizon

Ø 31,213 binary variables, 4,153 continuous variables, 
49,801 constraints

Ø 12 hours, gap=3.76% 



Three Stage Stochastic Solution
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Stochastic solution when price=0.2, 0.2

Stochastic solution when price=0.2, 1.5

Stochastic solution when price=0.2, 2.8

Delay the operations to stage three



Three Stage Stochastic Solution
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Stochastic solution when price=1.5, 0.2

Stochastic solution when price=1.5, 1.5

Stochastic solution when price=1.5, 2.8

One more well is TIL in stage 2



Three Stage Stochastic Solution
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Stochastic solution when price=2.8, 0.2

Stochastic solution when price=2.8, 1.5

Stochastic solution when price=2.8, 2.8



Conclusion & Future Work

Ø The proposed stochastic programming model can help upstream 
operators to hedge against price uncertainty when the variance of price is 
large

Ø There is not always a value of using stochastic programming under price 
uncertainty

Ø Pattern in results: seek flexibility as to whether to develop a well

Ø Need better algorithm to solve multi-stage stochastic programs of this 
type faster
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