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Stochastic Mixed Integer Programming (SMIP)

min cTx+
X

!2⌦

⌧!d
T y!

s.t. Ax = b

W!y! = h! � T!x 8! 2 ⌦

x 2
�
x = (x1, x2) : x1 2 {0, 1}n, x2 � 0

 

y! 2 {y = (y1, y2) : y1 2 {0, 1}m, y2 � 0
 

8! 2 ⌦

Convexified Subproblem:

min z! = dT y!

s.t. W!y! = h! � T!x
k

0  y!  yub

↵l!x+ �l!y!  �l! 8l 2 L

Benders decomposition cannot be applied directly.

Cutting planes

(Mixed) integer recourse
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Gomory cuts Lift-and-project cuts

Gade et at., 2014 Caroe and Tind, 1998

RLT CPT

Sherali and Fraticelli, 2002 Qi and Sen, 2017

MILP:

Convex MINLP1 (this talk):

Stochastic Mixed Integer Programming (SMIP)

Ø Represent the subproblems as generalized disjunctive programs

Ø Apply basic steps to the disjunctive programs to construct the convex 

hull

Ø Spatial branch and bound on the continuous first stage variables

1By convex MINLP, we mean mixed-integer nonlinear programs where the functions 
involved are convex, (see Lee and Leyffer 2011). 
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Convex MINLP with Mixed-integer Recourse

(P ) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 X, X =
�
x : xi 2 {0, 1}, 8i 2 I1, 0  x  xub

 
(4)

y! 2 Y 8! 2 ⌦, Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 
(5)

Convex Nonlinear 

Mixed binary

Assumption 1. Both x and 𝑦! are bounded.
Assumption 2. The problem has relatively complete recourse.
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Continuous Relaxation of the Second Stage

S! =
�
(x, y!|A1,!x+ g1,!(y!)  b1,!, y! 2 Y, 0  x  xub

 

(PC) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

x 2 X (3)

(x, y!) 2 conv(S!) 8! 2 ⌦ (4)

How to obtain the convex hull of 𝑺𝝎 in closed-form?
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Basics of Disjunctive Programming

Cj={x 2 IRn|�j(x)  0}, j 2 M �(x) : IRn ! IR1 is a convex function

H = [
j2M

Cj = {x 2 IRn| _
j2M

�j(x)  0}

P = \
j2M

Cj = {x 2 IRn| ^
j2M

�j(x)  0}

FCNF = \
i2T

Hi

FDNF = [
i2D

Pi

Union (elementary disjunctive set)

Conjunctive normal form intersection of some elementary disjunctive sets 

Disjunctive normal form the union of convex sets 

Intersection

Pi is a convex set Pi = {x 2 IRn|gi(x)  0}, where gi(x): IR
n ! IRm



Theorem 1 Let FRF be a disjunctive set in regular form. Then FRF can be

brought to DNF by |K| � 1 recursive applications of the following basic step

which preserves regularity:

For some r, s 2 K, bring Sr \ Ss to DNF by replacing it with:

Srs =
S

i2Dr,j2Ds

(Pi \ Pj)
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Equivalent Convex Disjunctive Programs

Regular Form: Form represented by the intersection of the union 
of convex sets

F is in regular form

Balas (1985)

FRF = \
k2K

Sk, Sk = [i2DkPi

Pi a convex set 8i 2 Dk
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Hierarchy of Relaxations for Convex Disjunctive Programs

P11

P12

P22

)()( 222112110 PPPPF ÈÇÈ=Illustration:

P21

(Ruiz, Grossmann, 2013)
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Hierarchy of Relaxations for Convex Disjunctive Programs

P11

P12

P22

)()( 222112110 PPPPF ÈÇÈ=Illustration:

P21

)( 2221 PPclconv È

)( 1211 PPclconv È

(Ruiz, Grossmann, 2013)
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Hierarchy of Relaxations for Convex Disjunctive Programs

)()( 222112110 PPPPF ÈÇÈ=Illustration:

P11

P12

P21

P22

No Basic Step Applied => HR

)( 0Frelh-

(Ruiz, Grossmann, 2013)



11

Hierarchy of Relaxations for Convex Disjunctive Programs

No Basic Step Applied => HR Basic Step Applied

)()( 222112110 PPPPF ÈÇÈ=Illustration:

P11

P12

P21

P22

)( 0Fclconv

P11

P12

P21

P22

(Ruiz, Grossmann, 2013)

)()()()( 22212112221121111 PPPPPPPPF ÇÈÇÈÇÈÇ=
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Hierarchy of Relaxations for Convex Disjunctive Programs

P11

P12

P21

P22

Basic Step Applied => CH

Tighter relaxation!

)()()()( 22212112221121111 PPPPPPPPF ÇÈÇÈÇÈÇ=

No Basic Step Applied => HR

)()( 222112110 PPPPF ÈÇÈ=Illustration:

P11

P12

P21

P22

)( 0Fclconv
)( 1Frelh-

(Ruiz, Grossmann, 2013)
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Convex Hull of the Second Stage Problem

2

66666664

A1,!x+ g1,!(y!)  b1,!

0  x  xub

0  y!  yub

(y!)j = 1

3

77777775

_

2

66666664

A1,!x+ g1,!(y!)  b1,!

0  x  xub

0  y!  yub

(y!)j = 0

3

77777775

8j 2 J1 (1)

_r2R

2

66666664

A1,!x+ g1,!(y!)  b1,!

0  x  xub

0  y!  yub

(y!)j = erj 8j 2 J1

3

77777775

(1)

S! =
�
(x, y!|A1,!x+ g1,!(y!)  b1,!, y! 2 Y, 0  x  xub

 

Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 

Disjunctive set representation

Apply basic steps (intersection of disjunctions):

set R all the possible combinations of the binary variables (y!)j , 8j 2 J1

Disjunctive Normal Form (DNF)

𝟐|𝑱𝟏| 𝒅𝒊𝒔𝒋𝒖𝒏𝒄𝒕𝒔

(Ruiz, Grossmann, 2013)

(Balas, 1985)
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Convex Hull of the Second Stage Problem

x =
X

r2R

ur
!

y! =
X

r2R

vr!

X

r2R

�r
! = 1, 0  �r

!  1, 8r 2 R

A1,!u
r
! + �r

!g1,!(v
r
!/�

r
!)  b1,!�

r
!, 8r 2 R

0  ur
!  xub�r

!, 8r 2 R

0  vr!  yub�r
!, 8r 2 R

(v!)j = erj�
r
! 8j 2 J1, r 2 R

(1)

Ceria and Soares (1999)

Perspective function
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Equivalence of (P) and (PC)

(PC) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

x 2 X (3)

(x, y!) 2 conv(S!) 8! 2 ⌦ (4)

Can apply generalized Benders decomposition to solve (PC)

(P ) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 X, y! 2 Y 8! 2 ⌦ (4)

S! =
�
(x, y!|A1,!x+ g1,!(y!)  b1,!,

y! 2 Y, 0  x  xub
 

Are (PC) and (P) equivalent?

Not in general. But there are some exceptions.
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Pure Binary First Stage

Proposition 1 Consider a special case of (P ) where the first stage variables

are all binary. We assume that in the corresponding problem (PC), the convex

hull of S! is expressed in closed-form. Then (P ) and (PC) are equivalent in the

sense that they have the same optimal objective value and the optimal solution

of (P ) can always be obtained based on the optimal solution of (PC).

(PC) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

x 2 X (3)

(x, y!) 2 conv(S!) 8! 2 ⌦ (4)

(P ) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 X, y! 2 Y 8! 2 ⌦ (4)

S! =
�
(x, y!|A1,!x+ g1,!(y!)  b1,!,

y! 2 Y, 0  x  xub
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Mixed Binary First Stage

(PC) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

x 2 X (3)

(x, y!) 2 conv(S!) 8! 2 ⌦ (4)

(P ) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 X, y! 2 Y 8! 2 ⌦ (4)

S! =
�
(x, y!|A1,!x+ g1,!(y!)  b1,!,

y! 2 Y, 0  x  xub
 

Corollary 1 For (PC) with both binary and continuous first stage variables, if

the optimal first stage variables x⇤ to (PC) are all at their upper or lower bound,

i.e., (x⇤)i = 0 or (x⇤)i = (xub)i, 8i 2 I, then (PC) and its corresponding (P)

are equivalent in the sense that they have the same optimal objective value.
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Spatial Branch and Bound

(PCBABq) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

xlb
q  x  xub

q (3)

x 2 X (4)

(x, y!) 2 conv(Sq
!) (5)

Sq
! =

�
(x, y!|A1,!x+ g1,!(y!)  b1,!, y! 2 Y, xlb

q  x  xub
q

 
(6)

Problem at node q

Branch on continuous x to satisfy the condition for Corollary 1

Branching rule: branch on the variable whose optimal value has largest 
distance to its bounds

Spatial: Branch on continuous variables



1. Initialization
UB = +1, LB = �1, k = 1, Lk = {q0}, xlb

q0 = 0, xub
q0 = xub

Solve (PCBABq0). Update LB, UB

19

GBDBAB

2. Branching
Select node q from Lk. Create two new nodes q1, q2
Add branching constraints to q1, q2. Delete q from Lk

Add q1, q2 to Lk. k = k + 1

3. Bounding
Solve (PCBABq1), (PCBABq2) with GBD.

Update UB, LB.

4. Fathoming
Fathom by optimality if V (PCBABq)  v(PCBABq) + ✏

Fathom by bound if v(PCBABq) + ✏ � UB
Check if Lk = ; Stop

yes

no

Proposition 1 Consider a special case of (P ) where the first stage variables

are all binary. We assume that in the corresponding problem (PC), the convex

hull of S! is expressed in the form of (??). Then (P ) and (PC) are equivalent

in the sense that they have the same optimal objective value and the optimal

solution of (P ) can always be obtained based on the optimal solution of (PC).

Proposition 2 The algorithm GBDBAB has finite ✏-convergence.

Convergence of GBDBAB
Generalized Benders Decomposition-based Branch and Bound
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A Sequential Convexification Scheme

Disjunctive set representation

Sq1
!j [ Sq0

!j , j 2 J1 \j2J1(S
q1
!j [ Sq0

!j)

2

66666664

A1,!x+ g1,!(y!)  b1,!

xlb
q  x  xub

q

0  y!  yub

(y!)j = 1

3

77777775

_

2

66666664

A1,!x+ g1,!(y!)  b1,!

xlb
q  x  xub

q

0  y!  yub

(y!)j = 0

3

77777775

8j 2 J1 (1)

Partial application of basic steps (intersection of disjunctions):

Sq
! = \t2T q

!

�
\j2Dq

!t
(Sq1

!j [ Sq0
!j)

�

\j2Dq
!t
(Sq1

!j [ Sq0
!j) = [r2Rq

!t
Sq
!tr

\t2T q
!
([r2Rq

!t
Sq
!tr)Use the hull relaxation of:
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A Sequential Convexification Scheme

(PCBABl
q) min cTx+

X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

xlb
q  x  xub

q (3)

(x, y!) 2 h� rel(Sq
!l), 8! 2 ⌦ (4)

The hull relaxation after applying l basic steps

When should we stop?

Proposition 1 For a given scenario !, if 9t0 2 T q
! such that (vr⇤!t0/�

r⇤
!t0)j, 8r 2

Rq
!t0 , �

r⇤
!t0 > 0, j 2 J1, are 0 or 1, i.e., vr⇤!t0/�

r⇤
!t0 satisfy the integrality constraints

in Sq
!, we have (xq⇤

l , yq⇤l! ) 2 conv(Sq
!).

Proposition 2 For a given scenario !, if 9t0 2 T q
! such that (vr⇤!t0/�

r⇤
!t0)j, 8r 2

Rq
!t0 , �

r⇤
!t0 > 0, j 2 J1, are 0 or 1, i.e., vr⇤!t0/�

r⇤
!t0 satisfy the integrality constraints

in Sq
!, we have (xq⇤

l , yq⇤l! ) 2 conv(Sq
!).

Proposition 3 For a given scenario !, if 9t0 2 T q
! such that (vr⇤!t0/�

r⇤
!t0)j, 8r 2

Rq
!t0 , �

r⇤
!t0 > 0, j 2 J1, are 0 or 1, i.e., vr⇤!t0/�

r⇤
!t0 satisfy the integrality constraints

in Sq
!, we have (xq⇤

l , yq⇤l! ) 2 conv(Sq
!).

Stop if the optimal solution is already in the convex hull of 𝑺𝝎
𝒒
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An Illustrative Example

min x1+x2+3x3+3x4+
X

!=!1,!2

⌧!
�
y1!�12y2!+100y3!+3y4!�3y5!

�
(1)

x1  4x3, x2  2x4, (2)

x1, x2 � 0 x3, x4 2 {0, 1} (3)

y1!  x1, y2!  x2 8! = !1,!2 (4)

(y1! � 3)2 + (y2! � 2)2  1 + 16(1� y4!) 8! = !1,!2 (5)

(y1! � 1)2 + y22!  1 + 16y4! 8! = !1,!2 (6)

y21! + (y2! � 1)2  1 + 16(1� y5!) 8! = !1,!2 (7)

(y1! � 4)2 + (y2! � 1)2  1 + 16y5! 8! = !1,!2 (8)

y1! + y2! + y3! � d! 8! = !1,!2 (9)

y1!, y2!, y3! � 0, y4!, y5! 2 {0, 1} 8! = !1,!2 (10)

Mixed-binary variables

Convex nonlinear
constraints

Uncertainty

Optimal value from DICOPT: -6.02080



LB= −6.04451, UB=−5.98613
𝑥& = 1.00000, 𝑥' = 1.03467

𝑥( = 1, 𝑥) = 1
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An Illustrative Example

0

1 2

𝑥0 ≥ 1.00000 𝑥0 ≤ 1.00000

Gap=1.0%

LB= −6.02092, UB=−6.02072
𝑥& = 1.00005, 𝑥' = 1.00003

𝑥( = 1, 𝑥) = 1
Gap=0.0%

LB= −6.02082, UB=−6.02080
𝑥& = 1.00000, 𝑥' = 1.00000

𝑥( = 1, 𝑥) = 1
Gap=0.0%

Fathom by
optimality
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Computational Results of the Illustrative Example

Scenarios
Linear 
Constr

Nonlinear 
Constr

Binary Var 
Continuous 

Var
SBB 

s(gap)
AlphaECP 

s(gap)
DICOPT 
s(gap)

20 62 80 42 62
Timed 

out(7%)
9 2

60 182 240 122 182
Timed 

out(234%)
60 10

150 452 600 302 452
Timed 

out(245%)
254 685

300 902 1200 602 902
Timed 

out(247%)
917

Timed 
out(9%)

Scenarios Time (s) Master (s) Subproblem (s)
UB 

subproblem 
(s)

Nodes
Max 

Iterations

20 80 3 59 10 3 21
60 76 3 58 5 3 23
150 111 10 81 9 3 25
300 121 11 81 11 3 22

Deterministic Equivalent

Proposed GBDBAB Faster for large problems
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Planning under Demand and Price Uncertainty

Ø First-stage decisions

q Binary variables: which process to install in each plant

q Continuous variables: the capacity of each installed process

Ø Second-stage decisions

q Binary variables: whether the transportation links are built

q Continuous variables: purchase amount of raw materials, etc.

Ø Constraints: satisfy demands, production rate constraints, etc.

Ø Objective: minimize expected total cost
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Planning Problem under Uncertainty

Scenarios
Linear 
Constr

Nonlinear 
Constr Binary Var 

Continuous 
Var

AlphaECP 
s(gap) SBB s(gap)

DICOPT 
s(gap)

3 332 12 32 338 6 49 3

9 980 36 80 998 81
Timed 

out(2%) 9

27 2,924 108 224 2,978 3530
Timed 

out(19%) 96

81 8,756 324 656 8,918 Timed out (2%)
Timed 

out(40%)
Timed 

out(0.2%)

Deterministic Equivalent

Scenarios Time (s) Master (s) Subproblem (s)
UB 

subproblem 
(s)

Basic step 
(max, min)

3 705 59 491 16 (7,2)
9 1,221 92 861 23 (5,1) 
27 1,859 216 1,403 17 (0,0)
81 7,994 1,534 5,091 83 (1,0)

GBDBAB

Problem from Li and Grossmann (2018). 2 suppliers, 2 plants, 2 customers.

All the problems solved at root node
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Conclusion

Ø We have proposed a generalized Benders decomposition-based branch 

and bound algorithm for two-stage convex 0-1 mixed-integer nonlinear 

stochastic programs with mixed-integer first and second stage variables 

Ø Sequential convexification could sometimes help avoid the exponential 

representation of the convex hull
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Questions?

Acknowledgment
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Constrained Layout Problem under Price Uncertainty

A

B

C

First stage decisions

Second stage decisions
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Constrained Layout Problem under Price Uncertainty

Scenarios
Linear 
Constr

Nonlinear 
Constr Binary Var 

Continuous 
Var SBB s(gap)

AlphaECP 
(s)

DICOPT 
s(gap)

3 54 72 30 36 14 120 3
9 108 216 66 84 4142 1478 43

36 351 864 228 300
Timed 

out(94%) Timed out
Timed 

out(84%)

100 927 2400 612 812
Timed 

out(98%) Timed out 
Timed 

out(97%)

Deterministic Equivalent (big-M reformulation)

Deterministic Equivalent (hull reformulation)

Scenarios
Linear 
Constr

Nonlinear 
Constr

Binary Var 
Continuous 

Var
SBB 

s(gap)
AlphaECP 

(s)
DICOPT 
s(gap)

3 360 72 30 180 38 32 6
9 702 216 66 372 5626 638 49

36 2241 864 228 1236
Timed 

out(52%)
Timed out 

(46%)
Timed out

100 5889 2400 612 3284
Timed 

out(82%)
Timed out 

(67%)
Timed out
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Constrained Layout Problem under Price Uncertainty

Scenarios Time (s) Master (s) Subproblem (s) UB subproblem (s) Nodes
3 137 40 63 8 1
9 276 65 17 17 3

36 444 117 277 20 1
100 537 85 363 39 1

GBDBAB


