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Stochastic Mixed Integer Programming (SMIP)

min cT:U—|—E Twd Yo
wel

st. Ax=b

Woys = hy, —T,x Yw € )

Benders decomposition cannot be applied directly.

Convexified Subproblem:

min z, = dTyw

] |, + BioVYo <Y VIEL : Cutting planes




Stochastic Mixed Integer Programming (SMIP)

MILP:

Gade et at., 2014 Caroe andTind, 1998 Sherali and Fraticelli, 2002 Qi and Sen, 2017

Convex MINLP? (this talk):

> Represent the subproblems as generalized disjunctive programs
» Apply basic steps to the disjunctive programs to construct the convex

hull

» Spatial branch and bound on the continuous first stage variables

By convex MINLP, we mean mixed-integer nonlinear programs where the functions
involved are convex, (see Lee and Leyffer 2011).
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Convex MINLP with Mixed-integer Recourse

. T T
(JJd w 1
(P) min ¢ z+ %T wY Convex Nonlinear

Aoz > bo, | go(z) <0

Al,wx "H gl,w<yw) S bl,w Vw S Q

Assumption 1. Both xand y,, are bounded.
Assumption 2. The problem has relatively complete recourse.




Continuous Relaxation of the Second Stage

(PC) min 'z + Z T 0L 1o
wel2
Aoz > by, go(z) <0

re X

(z,9,) € conv(S,) Yw e Q
Sw = {(a:,yw|A1,w:r + gl,w(yw) < bl,wayw S Y,O <x< xUb}

How to obtain the convex hull of S, in closed-form?




Basics of Disjunctive Programming

Ci={z € R"|¢;(z) <0},j € M ¢(z):R" = R" is a convex function

Union (elementary disjunctive set)

— = n () <
H= U Ci={aeR" v ¢;(z)<0)

Intersection

P= 0Ci={zeR"| A ¢x)<0)

Conjunctive normal form intersection of some elementary disjunctive sets
Fonr = 0 H,
€T
Disjunctive normal form the union of convex sets
Fpnr = U P
€D

P; is a convex set P; = {x € IR"|g;(x) < 0}, where g;(z): R" — R"™




Equivalent Convex Disjunctive Programs

Regular Form: Form represented by the intersection of the union
of convex sets

Frrp = 0O Sk, Sk = Uiep, P
kEK —— Fisinrequl
gular form
P; a convex set Vi € Dy,

Theorem 1 Let Frp be a disjunctive set in reqular form. Then Frp can be
brought to DNF by |K| — 1 recursive applications of the following basic step
which preserves reqularity:

For some r,s € K, bring S, NSs to DNF' by replacing it with:

Sys = U (FENPR) Balas (1985)
i€D,.,jED,




Hierarchy of Relaxations for Convex Disjunctive Programs

Theorem 2.4. Fori=1,2... .k let F; = () Sk be a sequence of regular forms
keK
of a disjunctive set such that F; is obtained from F;_i by the application of a

basic step, then:

h-rel(F;) C h-rel(F;_1)  (Ruiz, Grossmann, 2013)

lllustration: F =(P, UP,)N (P, UP,)

P12




Hierarchy of Relaxations for Convex Disjunctive Programs

Theorem 2.4. Fori=12...klet F; = () Sk be a sequence of reqular forms
ke K
of a disjunctive set such that F; is obtained from F;_i by the application of a

basic step, then:

h-rel(F;) C h-rel(F;_1)  (Ruiz, Grossmann, 2013)




Hierarchy of Relaxations for Convex Disjunctive Programs

Theorem 2.4. Fori=1,2... .k let F; = () Sk be a sequence of regular forms
keK
of a disjunctive set such that F; is obtained from F;_i by the application of a

basic step, then:

h-rel(F;) C h-rel(F;_1)  (Ruiz, Grossmann, 2013)

lllustration: F =(P, UP,)N (P, UP,)
h—rel (F,)

_________

P

No Basic Step Applied => HR
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Hierarchy of Relaxations for Convex Disjunctive Programs

Theorem 2.4. Fori=1,2... .k let F; = () Sk be a sequence of regular forms
keK
of a disjunctive set such that F; is obtained from F;_i by the application of a

basic step, then:

h-rel(F;) C h-rel(F;_1)  (Ruiz, Grossmann, 2013)

lllustration: F,=(B,OB,)N(P,VP,) Fi=(R,NE) V(B NE,) V(R NE) V(P NE,)

clconv(F,)

_________

P

No Basic Step Applied => HR Basic Step Applied
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Hierarchy of Relaxations for Convex Disjunctive Programs

Theorem 2.4. Fori=1,2...klet F; = () Sk be a sequence of regular forms
ke K
of a disjunctive set such that F; 1s obtained from F;_1 by the application of a

basic step, then:

h-rel(F;) C h-rel(F;_1) (Ruiz, Grossmann, 2013)

lllustration:  F,=(R, UR,) (B, UP,)  F=(B,"Py)U(B, NB,)U(B, NP U(B, A Py)
clconv(F,)

_____

Tighter relaxation!
P

No Basic Step Applied => HR Basic Step Applied => CH
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Convex Hull of the Second Stage Problem

Sw - {(x7yw‘A1,wx -+ gl,w(yw) S bl,wayw c Y,O S T S x“b}

Y ={y:y; €{0,1},Vj € Ji, 0<y <y}

Disjunctive set representation

Al,wx + gl,w(yw) S bl,w

0<zx<gub
0 <y, <y

(yw)j =1

Al,wx + gl,w (?Jw) S bl,w

0<zx<gub

0 <y, <y

(yw)j =0

Apply basic steps (intersection of disjunctions):

v'rER

(yw)j = €rj

AAl,waj + gl,w(yw) S bl,w

0<x<gu

0<y, <y

Vi e J;

Vi e i

(Balas, 1985)

(Ruiz, Grossmann, 2013)

Disjunctive Normal Form (DNF)

2U1l disjuncts

set R all the possible combinations of the binary variables (y,,);, Vj € Ji
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Convex Hull of the Second Stage Problem

Ar ol H0 91w (v w/%)l< b1wY,, VreR

0<ul, <a", VreR Perspective function
0< o, <y“4l, VreR

(Vw)j =€rjv, Vi€ Ji,r€ER

Ceria and Soares (1999)

14



Equivalence of (P) and (PC)

(PC) min o+ Z degyw

: T T
(P) min c¢ z+ Z Twd, Yo =

we

Aoz > by, go(x) <0 Aoz > by, go(x) <0

AT+ 91,00We) b1 YweQ reX

reX, Yo €Y Vwe (x,yw) € conv(S,) Yw e Q

Sw — {(CU,yw|A1,w$ + gl,w(yw) < bl,wa

Can apply generalized Benders decomposition to solve (PC) Y« Y,0 <z <ot}

Are (PC) and (P) equivalent?

Not in general. But there are some exceptions.
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Pure Binary First Stage

(P) min cf'z+ Z T 0L 1Yo (PC) min 'z + Z T A 1o
we wel
Aoz > bo, go(x) <0 Aoz > by,  go(x) <0
Awa + gl,w(yw) < wa Yw € r e X
reX, yo€Y Ywe (x,Yw) € conv(S,,) Yw € )

Sw — {(xayw|A1,w$ +gl,w(yw) < bl,ow

waY,ngSx“b}

Proposition 1 Consider a special case of (P) where the first stage variables
are all binary. We assume that in the corresponding problem (PC'), the convex

hull of S, is expressed in closed-form. Then (P) and (PC') are equivalent in the

sense that they have the same optimal objective value and the optimal solution

of (P) can always be obtained based on the optimal solution of (PC).
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Mixed Binary First Stage

(P) min cf'z+ Z T 0L 1Yo (PC) min 'z + Z T A 1o
we wel
Aoz > bo, go(x) <0 Aoz > by,  go(x) <0
Awa + gl,w(yw) < wa Yw € r e X
reX, yo€Y Ywe (x,Yw) € conv(S,,) Yw € )

Sw — {(xayw|A1,w$ +gl,w<yw) S bl,ow

waY,ngSx“b}

Corollary 1 For (PC) with both binary and continuous first stage variables, if
the optimal first stage variables x* to (PC') are all at their upper or lower bound,

i.e., (x%); = 0 or (z*); = (z*°);, Vi € I, then (PC) and its corresponding (P)

are equivalent in the sense that they have the same optimal objective value.
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Spatial Branch and Bound

Spatial: Branch on continuous variables
Problem at node g

(PCBAB,) min c'z+ Z T 0 10,
wel?

Apx > by, go(z) <0

Ib ub
L <z S:cq

re X

(x,y,) € conv(SY)

Branch on continuous x to satisfy the condition for Corollary 1

Branching rule: branch on the variable whose optimal value has largest
distance to its bounds
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ConvergeBxBXE:BDBAB

Generalized Benders Decomposition-based Branch and Bound

no

yes

Stop

Proposition 2 The algorithm GBDBAB has finite e-convergence.
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A Sequential Convexification Scheme

Disjunctive set representation

Al,ww + gl,w(yw) S bl,w 141,c,uaj + gl,w(yw) S bl,w
lb ub lb ub
< x<x < x<x
q q y q q vjeJ,
0 <y, <y“ 0 <y, <y
i (Y)j =1 11 (4)s =0 l
SILUST, e Njes (S35 U ST

Partial application of basic steps (intersection of disjunctions):

S4a

w

1 0
= Myerg (Njeps, (S2;USEY))
1 0
ijDit(ng U ng) — UreRgtSoq.;tr

Use the hull relaxation of:  N,c74(U,cpe SZ,,)

wt —wtr
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A Sequential Convexification Scheme

(PC’BABé) min ¢’z + Z T 0L 1Yo
well

Apx > by, go(x) <0

lb b
T, g:):ga:q

(z,ys,) € h—rel(S?), Ywe

The hull relaxation after applying [ basic steps

When should we stop?
Stop if the optimal solution is already in the convex hull of S,

Proposition 3 For a given scenario w, if It € T2 such that (vo% /v5) i, Vr €

RL ., A > 0,5 € Ji, are 0 or 1, i.e., [}, /D% satisfy the integrality constraints

wt’

in ST,

we have (z]",yl") € conv(ST).
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An lllustrative Example

min @122 +323+3z4+ Y Tw (Y1 — 12020 + 100ys0 + 3Yaw — 3Ysw)

w=wi,w2

L1 S 43337 X2 S 2%4,

1,2 >0 x3,24 € {0,1}

Yiw < T1, Yo < To Vw = wy,wo

r \
U (Y10 — 3)° + (Y2 — 2)* 1< 14+ 16(1 — ya) Vo = wi,wo

, (ylw 1)+ y2w|< 1+ 16ys, Yw = wi,ws Convexno::llinear
(—-======7% constraints

—————————-
————————————q

am - O O - O . . S S S . .

Yiw + Y20 + Y3w 2. C_lw_l Vw = wy,ws  Uncertainty

Yiws Y2w, Ysw > 0, Yaw, Usw € {0,1}  Vw = wy,wy

Mixed-binary variables

Optimal value from DICOPT: -6.02080
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An lllustrative Example

B= -6.04451, UB=-5.98613
X1 = 1.00000, X, = 1.03467
X3 = 1, Xgq = 1

Gap=1.0%

x; > 1.00000 x; < 1.00000

Fathom by

LB= -6.02092, UB=-6.02072 Optimality LB= -6.02082, UB=-6.02080

X1 = 1.00005, X, = 1.00003 X1 = 1.00000, X, = 1.00000
x3:1,x4:1 x3:1,x4:1

Gap=0.0% Gap=0.0%
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Computational Results of the lllustrative Example

Deterministic Equivalent

: Linear Nonlinear _. Continuous SBB  AlphaECP DICOPT
Scenarios Binary Var
Constr Constr Var s(gap) s(gap) s(gap)
Timed
20 62 80 42 62 oUt(7%) 9 2
Timed
60 182 240 122 182 oUt(234%6) 60 10
150 2 600 02 2 Ul 2 68
5 45 3 45 oUt(245%) 54 5
[ 00 02 1200 602 02 ] [ Timed 1 Timed]
3 9 9 out(247%) 27 out(o%)
Proposed GBDBAB Faster for large problems
uB Max
Scenarios Time (s) Master(s) Subproblem (s) subproblem Nodes :
(s) Iterations
20 80 3 59 10 3 21
60 76 3 58 5 3 23
150 111 10 81 9 3 25
300 121 11 81 11 3 22




Planning under Demand and Price Uncertainty

Plants Customers Jil ) 3 »
11.51 »
—P A

P1 @ — > 12.51 b4 14.51
4 12.52
P2 :
13.51
1352 f——|—>
13.54

J4

04

v

14.52

A A 4

%)
f=
o
°
=
ol
wn

> First-stage decisions
[ Binary variables: which process to install in each plant
 Continuous variables: the capacity of each installed process
» Second-stage decisions
O Binary variables: whether the transportation links are built
 Continuous variables: purchase amount of raw materials, etc.
» Constraints: satisfy demands, production rate constraints, etc.

» Objective: minimize expected total cost
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Planning Problem under Uncertainty

Problem from Li and Grossmann (2018). 2 suppliers, 2 plants, 2 customers.

Deterministic Equivalent

Linear | Nonlinear |_. Continuous | AlphaECP DICOPT
scenaio] conce | “Gonge By var| NG| A" Iseesign) Sl
3 332 12 32 338 6 49 3

Timed
9 980 36 80 998 81 out(2%) 9
2 2,92 108 22 2,978 0 Timed 6
7 1924 b 197 353 out(19%) 9
Timed Timed
i 0
81 8,756 324 656 8,918 [Tlmed e (2 out(40%) out(o.z%)]
GBDBAB All the problems solved at root node
. Basic step
Time (s) (max, min)
3 705 59 491 16 (7,2)
9 1,221 92 861 23 (5,1)
27 1,859 216 1,403 17 (0,0)
81 7:994 1,534 5,091 83 _(1,0)
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Conclusion

» We have proposed a generalized Benders decomposition-based branch
and bound algorithm for two-stage convex 0-1 mixed-integer nonlinear
stochastic programs with mixed-integer first and second stage variables

» Sequential convexification could sometimes help avoid the exponential

representation of the convex hull
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Constrained Layout Problem under Price Uncertainty

- . First stage decisions ' -

Second stage decisions
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Constrained Layout Problem under Price Uncertainty

Deterministic Equivalent (big-M reformulation)

: Linear  Nonlinear _. Continuous AlphaECP DICOPT
SUEl: Constr Constr Binary Var Var >BB s(gap) ©) s(gap)
3 54 72 30 36 14 120 3
9 108 216 66 84 4142 1478 43
Timed : Timed
36 351 864 228 300 out(94%) Uiesse @ out(84%)
Timed : Timed
[ 100 927 2400 612 812 ] out(98%) ™9V Gut(g7%)

: Linear Nonlinear _. Continuous SBB AlphaECP DICOPT
Scenarios Binary Var
Constr Constr Var s(gap)
3 360 72 30 180 38 32 6
9 702 216 66 372 5626 638 49
36 2241 864 228 1236 UlLuiel Sl e Timed out

out(52%) (46%)
] Timed Timed out
324 | out(82%)  (67%)

Timed out

[100 5889 2400 612
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Constrained Layout Problem under Price Uncertainty

GBDBAB
Scenarios Time (s) Master(s) Subproblem (s) UB subproblem (s) Nodes
3 137 40 63 8 1
9 276 65 17 17 3
36 byl 117 277 20 1
1

100 537 85 363 39
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