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Stochastic Mixed Integer Programming (SMIP)

In order to apply Benders decomposition

Benders decomposition cannot be applied directly. 

(Mixed) integer recourse

min cTx+
X

!2⌦

⌧!d
T y!

s.t. Ax = b

W!y! = h! � T!x 8! 2 ⌦

x 2 X, X =
�
x : xi 2 {0, 1}, 8i 2 I1, 0  x  xub

 

y! 2 Y 8! 2 ⌦, Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 

Try to solve subproblem: min dT y!

s.t. W!y! = h! � T!x
k 8! 2 ⌦

y! 2 Y Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 

No strong duality in the subproblem
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Stochastic Mixed Integer Programming (SMIP)
In order to apply Benders decomposition

min z! = dT y!

s.t. W!y! = h! � T!x
k

0  y!  yub

↵l!x+ �l!y!  �l! 8l 2 L Cutting planes

Convexified Subproblem:

Cuts valid for set 

Gomory cuts Lift-and-project cuts
Gade et at., 2014 Caroe and Tind, 1998

RLT CPT
Sherali and Fraticelli, 2002 Qi and Sen, 2017

MILP:

Few works have been reported for MINLP

S! =
�
(x, y!)|W!y! = h! � T!x, y! 2 Y, 0  x  xub

 
(1)

RLT: Reformulation Linearization Technique     CPT: Cutting Plane Tree
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Stochastic Mixed Integer Nonlinear Programming
(P ) min cTx+

X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 X, X =
�
x : xi 2 {0, 1}, 8i 2 I1, 0  x  xub

 
(4)

y! 2 Y 8! 2 ⌦, Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 
(5)

Nonconvex Nonlinear 

Mixed binary

This talk

Assumption 1 Problem (P ) has relatively complete recourse, i.e., any solution
x that satisfies the first stage constraints has feasible recourse decisions in the
second stage.

Assumption 2 The feasible region of (P ) is compact.

Assumption 3 xub and yub are finite, i.e., both the first and the second stage
decisions are bounded.
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Previous Work

Ø Pure binary first stage variables

Ø Nonconvex Generalized Benders Decomposition (Li et al., 2011)

Ø Mixed-integer first stage variables

q A joint decomposition algorithm that has convex Benders subproblems
(Ogbe and Li, 2018)

q Perfect Information-based branch and bound (Cao and Zavala, 2017)

q Modified Lagrangean decomposition-based branch and bound (Kannan 
and Barton, 2018)

Branch and bound tends to have slow convergence computationally

Branch and cut



Solution Strategy
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Ø At high level: Spatial branch and bound to solve the problem to optimality

q Branch on the first stage variables

Ø At low level: Each node in the BAB process is solved by Generalized 

Benders-like decomposition algorithm with cutting planes

Ø Two types of valid inequalities in the Benders master problem

Ø Lagrangean cuts

qCombine with Lagrangean decomposition 

Ø Benders cuts

qConvexify the Benders subproblem with cutting planes



Lagrangean cuts
Benders decomposition Lagrangean decomposition

Initialization

Benders master problem
(only contain 1st stage variables)

Lower bound LB

Benders subproblem
(Find feasible solution for fixed 1st

stage variables)
Upper bound UB

UB-LB≤ 𝜖

Stop

xk

yes

dual cuts

no

Initialization

Lagrangean subproblem
(Relax NAC for 1st stage variables)

Update multipliers
Lower bound LB

Heuristic
(Find feasible solution)

Upper bound UB

UB-LB≤ 𝜖

Stop
yes

no

Lagrangean
cuts

Mitra et al. 2016
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⌘! � z⇤kSL,! � µk
!x 8! 2 ⌦, k 2 K



Lagrangean cuts
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Proposition 1 ⌘! � z⇤kSL,! � µk
!x is valid for the Benders master problem.

Proposition 2 The Benders master problem with the Lagrangean cuts yields a

lower bound that is at least as tight as using Lagrangean decomposition.

Li and Grossmann (2018)
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Benders cuts

(SBk
!) : min zkSB,! = ⌧!d

T y!

s.t. x = x̃k

A1,!x+ g̃1,!(y!, t!)  b1,!

↵x
kjx+ ↵y

kjy! + ↵u
kjt! � �kj 8k 2 K, j 2 Jk

1

0  y  yub

min ⌧!d
T y!

s.t. x = x̃k

A1,!x+ g1,!(y!)  b1,!

y! 2
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 

min ⌧!d
T y!

s.t. x = x̃k

A1,!x+ g̃1,!(y!, t!)  b1,!

y! 2
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 

Nonconvex Convex relaxation 

Mixed-integer

Cutting planes

Now the subproblem is continous and convex
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Benders Master Problem

(MBk) : min zkMB =
X

!

⌘!

s.t. A0x � b0, g0(x)  0

⌘! � z⇤lSL,! � µl
!x 8! 2 ⌦, l 2 L

⌘! � z⇤kSB,! + (�k
!)

T (x� x̃k) + ⌧!c
Tx 8! 2 ⌦, k 2 K

x 2 X, X =
�
x : xi 2 {0, 1}, 8i 2 I1, 0  x  xub

 

Lagrangean cuts

Benders cuts

Still has duality gap. Need to do spatial branch and bound.



11

GBD-based Branch and Cut

(Pq) min cTx+
X

!2⌦

⌧!d
T
!y! (1)

A0x � b0, g0(x)  0 (2)

A1,!x+ g1,!(y!)  b1,! 8! 2 ⌦ (3)

x 2 Xq, Xq =
�
x : xi 2 {0, 1}, 8i 2 I1, xlb

q  x  xub
q

 
(4)

y! 2 Y 8! 2 ⌦, Y =
�
y : yj 2 {0, 1}, 8j 2 J1, 0  y  yub

 
(5)

Problem Solved at node q

Branch on stage 1 variables. 

We can solve each (Pq) by generalized Benders decomposition with Lagrangean cuts.
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Node Selection & Branching Rules

Select node q such that q = arg min
q2�

LBq.

Select the first stage variable with the largest normalized relative diameter,

i⇤ = argmax
i2I

(xub
q )i � (xlb

q )i
(xub

q0 )i � (xlb
q0)i

�i

q0 represents the root node. �i is a normalization factor for variable i. Two new

nodes q1 and q2 are then created and bisect the domain of variable i⇤.

Node Selection rule 

Branching rule example
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GBD-based Branch and Cut

Solve a single nodeSpatial branch and bound

Initialization

Select node & branch

Check
convergence

Fathom node & 
Update bounds

End

No

Yes

Lagrangean subproblems Update multipliers

Benders master problem

Benders subproblems
Convexify with cuts

Add Lagrangean cuts

Add Benders cuts

Upper bound procedure

Check termination criteria

Yes

No
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Definition

Definition 1 A subdivision is called exhaustive if lim
p!1

�(Xqp) = 0, for all de-

creasing subsequences Xqp generated by the subdivision.

Definition 2 A selection operation is said to be bound improving if, after a
finite number of steps, at least one partition element where the actual lower
bounding is attained is selected for further partition.

Definition 3 The “deletion by infeasibility” rule throughout a branch and bound
procedure is called certain in the limit if, for every infinite decreasing sequence
{Xqp} of successively refined partition elements with limit X̄, we have X̄\D 6= ;.

Definition 4 A lower bounding operation is called strongly consistent if, at
every iteration, any undeleted partition set can be further refined and if any in-
finite decreasing sequence {Xqp} successively refined partition elements contains
a sub-sequence {Xqp0 } satisfying X̄ \ D 6= ;, lim

p!1
LBqp = z⇤(X̄ \ D), where

X̄ = \pXqp .

Horst and Tuy (2013)
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Convergence

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

ing.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim
q!1

LBq = lim
q!1

UBq =

z⇤.

Horst and Tuy (2013)

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

ing.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim
q!1

LBq = lim
q!1

UBq =

z⇤.

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

ing.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim
q!1

LBq = lim
q!1

UBq =

z⇤.

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

ing.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim
q!1

LBq = lim
q!1

UBq =

z⇤.

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

ing.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim
q!1

LBq = lim
q!1

UBq =

z⇤.
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Implementation

Ø Implemented using Plasmo v0.0.1 (Jalving et al., 2017) in JuMP Julia.

Ø PlasmoAlgorithm.jl: Julia package that implements decomposition

algorithms using Plasmo graphs as input.
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Applications of the Algorithm

Ø Stochastic Pooling Problem with Contract Selection 

Ø Crude Selection and Refinery Optimization Under Uncertainty (Yang and 

Barton, 2016) 

Ø Storage Design for a  Multi-product Plant under Uncertainty (Rebennack et 

al. 2011)

Ø Stochastic Pooling Problem with Contract Selection 



18

Stochastic Pooling Problem with Contract Selection

Ø Stage 1 decisions: feeds and pools selection (binary), feeds and pools 
capacity(continuous).

Ø Stage 2 decisions: contract selection for feeds (binary), amount of feeds 
purchased under each contract, mass flow rate (continuous).

Ø Constraints: capacity limitation, mass balance, quality specifications (bilinear), 
contract selection.

Ø Sources of Uncertainty: Demand of products. Price of feeds. Selling price of 
products.
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Feed i Pool l Product j

i1

i4

i3

i2

l1

l4

l3

l2

j1

j2

j3

i5

Stochastic Pooling Problem with Contract Selection

Feed i Pool l

300.0

201.9

247.1

500.0

245.2

Possible structure Stage 1 decisions
Case study – 3 scenario problem

Cost = 2414.98
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Feed i Pool l Product j

Second stage decisions—low demand 

172.4

116.8

191.0

14.2

77.5

80.8

146.1
43.6

118.0

160.3

121.1

198.8

Contracts fixed Discount 
after certain 
amount

Bulk 
discount

Feed 1 289.2
Feed 2 191.0
Feed 5

172.4
289.2

191.0

0.0

307.8

Stochastic Pooling Problem with Contract Selection
Case study – 3 scenario problem

Profit = 2785.87
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Feed i Pool l Product j

76.0

224.0

40.8

119.4

3.0

124.7

33.6
221.9

244.5

153.0

224.9

369.2

Contracts fixed Discount 
after certain 
amount

Bulk 
discount

Feed 1 300.0
Feed 2 201.9
Feed 5 245.2

247.1
300.0

201.9

245.2

500.0

161.1

10.0

235.2

Second stage decisions—high demand 

Stochastic Pooling Problem with Contract Selection
Case study – 3 scenario problem

Profit = 4419.94
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Stochastic Pooling Problem with Contract Selection

#Variables: 9 binary, 9 continuous in stage 1. 32 binary, 112 continuous in stage 2 per scenario.
#Constraints: 18 linear stage 1. 116 linear, 22 nonlinear stage 2 per scenario.

#Scenarios 3 9 27
BARON 18.5.8 5/0.1 3005/0.1 104/8.7
ANTIGONE 1.1 16/0.1 251/0.1 104/1.4

SCIP 5.0 104/54.4 104/100.0 104/100.0
Walltime/gap

Deterministic Equivalent

#Scenarios 3 9 27

GBD (with cuts)+L 152/0.1
1

502/0.1
1

2113/0.1
1

GBD+L 104/0.1
381

104/0.8
39

104/1.3
7

LD 104/0.2
363

104/7.1
43

104/12.2
9

Decomposition Algorithms

LD:Lagrangean Decomposition
L:Lagrangean cuts
GBD:Generalized Benders Decomposition

Walltime/gap
#nodes

Closes the gap at the root node
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Conclusions and Future Work
Ø Cutting planes can potentially reduce the number of nodes in the proposed Generalized 

Benders decomposition-based branch and cut algorithm

Ø Heuristics on when to add the cutting planes should be proposed in the future

Li, Can, and Ignacio E. Grossmann. "A generalized Benders decomposition-based 
branch and cut algorithm for two-stage stochastic programs with nonconvex 
constraints and mixed-binary first and second stage variables." Journal of Global 
Optimization 75.2 (2019): 247-272.
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