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Stochastic Mixed Integer Programming (SMIP)
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Benders decomposition cannot be applied directly.

In order to apply Benders decomposition

Try to solve subproblem: min d%y,
sit. Wyys = hy — T.z" Yw e

v €Y Y ={y:y; €{0,1},Vj ey, 0<y<y")

No strong duality in the subproblem




Stochastic Mixed Integer Programming (SMIP)

In order to apply Benders decomposition

Convexified Subproblem: min z, = d" y,,

sit. Wyyey = hy — Toz®

Cuts valid for set S, = {(:U,yw)|Wwyw =h, —T,z,y, €Y,0<x < a:“b}

MILP:

Gade et at., 2014 Caroe and Tind, 1998  Sherali and Fraticelli, 2002 Qi and Sen, 2017

Few works have been reported for MINLP

RLT: Reformulation Linearization Technique  CPT: Cutting Plane Tree
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Stochastic Mixed Integer Nonlinear Programming
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Assumption 1 Problem (P) has relatively complete recourse, i.e., any solution
x that satisfies the first stage constraints has feasible recourse decisions in the

second stage.

Assumption 2 The feasible region of (P) is compact.

Assumption 3 2" and y“ are finite, i.e., both the first and the second stage
decisions are bounded.




Previous Work

» Pure binary first stage variables
» Nonconvex Generalized Benders Decomposition (Li et al., 2011)
» Mixed-integer first stage variables

A joint decomposition algorithm that has convex Benders subproblems
(Ogbe and Li, 2018)

 Perfect Information-based branch and bound (Cao and Zavala, 2017)

d Modified Lagrangean decomposition-based branch and bound (Kannan
and Barton, 2018)

Branch and bound tends to have slow convergence computationally

Branch and cut




Solution Strategy

» At high level: Spatial branch and bound to solve the problem to optimality
(J Branch on the first stage variables

» At low level: Each node in the BAB process is solved by Generalized

Benders-like decomposition algorithm with cutting planes
» Two types of valid inequalities in the Benders master problem
» Lagrangean cuts
L Combine with Lagrangean decomposition
> Benders cuts

[ Convexify the Benders subproblem with cutting planes




LLagrangean cuts

Benders decomposition

‘w

no

Lagrangean decomposition

S

no

Initialization Initialization
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Benders master problem _cuts Lagrangean subproblem h
(only contain 1% stage variables) |~ = (Relax NAC for 1% stage variables)
Lower bound LB ! Update multipliers
\_ |
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Mitra et al. 2016




LLagrangean cuts

Proposition 1 7, > zgkLw — pFx is valid for the Benders master problem.

Proposition 2 The Benders master problem with the Lagrangean cuts yields a

lower bound that is at least as tight as using Lagrangean decomposition.

Li and Grossmann (2018)




Benders cuts

min  7,d’ y, min  7,d" Y,

st. x=3i" Nonconvex st x =it Convex relaxation
A1 Ho1w(Yu ) < b1w = Ao {gl,w(yw, tw)|< b1w
wo€ {yiuy € 10,1195 € 11, 05y <y} lw € {uipel01h Ve 0y <y

Mixed-integer

(SBf,) :  min ng’w = 1,dTy,

st. x=2z"

0<y <y

Now the subproblem is continous and convex




Benders Master Problem

(MB*): min z]@B:an

st. Aor >by, go(z)<0

Mo > 2510 0 — Hot YwEQIEL Lagrangean cuts

Nw = ZSB w ()‘Z)T(x - fz’k) +ruc T Vw e Qkek Benders cuts

Still has duality gap. Need to do spatial branch and bound.
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GBD-based Branch and Cut

Problem Solved at node ¢

(P,) min c'x+ Z T dl Y.,
we

Apx > by, go(x) <0

Al w4+ 1w Yw) <bi, Ywe
Branch on stage 1 variables.

xEXq’ Xq:{xx,LE{O,l},VZEIl, xi]nggxgb}

Yo €Y YweQ, Y={y:y;€{0,1},Vie S, 0<y<y*}

We can solve each (P,) by generalized Benders decomposition with Lagrangean cuts.
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Node Selection & Branching Rules

Node Selection rule

Select node ¢ such that ¢ = arg min LB,.
qel’

Branching rule example

Select the first stage variable with the largest normalized relative diameter,

i* = argmax
ier  (@g))i — (24)i

qo represents the root node. ¢; is a normalization factor for variable . Two new

nodes ¢; and ¢o are then created and bisect the domain of variable ¢*.
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GBD-based Branch and Cut

SIS emsesememe—s
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Initialization I
|
|
|
\ 4 ] I
[ Select node & branch J : » Lagrangean subproblems [ »>| Update multipliers
A I I
I
: jAdd Lagrangean cuts
| — Benders master problem * -
No I <—I
! ! !
Yes : I Add Benders cuts
End Check : Benders subproblems — 4
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Definition

Definition 1 A subdivision is called exhaustive if lim 6(X, ) = 0, for all de-

pP— 00
creasing subsequences X, generated by the subdivision.

Definition 2 A selection operation is said to be bound tmproving if, after a
finite number of steps, at least one partition element where the actual lower
bounding is attained is selected for further partition.

Definition 3 The “deletion by infeasibility” rule throughout a branch and bound
procedure is called certain in the limit if, for every infinite decreasing sequence
{Xy, } of successively refined partition elements with limit X, we have XND # {).

Definition 4 A lower bounding operation is called strongly consistent if, at
every iteration, any undeleted partition set can be further refined and if any in-
finite decreasing sequence { X, } successively refined partition elements contains
a sub-sequence {X, ,} satisfying X N D # 0, pli_)n;o LB, = z*(X N D), where

X =0n,X,,.

Horst and Tuy (2013)

14



Convergence

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improv-

mng.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algo-

rithm.

Lemma 4 The proposed algorithm is strongly consistent.

Theorem 1 The proposed algorithm is convergent, i.e., lim LB, = lim UB, =
q— 00 q— 00

*

z .

Horst and Tuy (2013)
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Implementation

» Implemented using Plasmo v0.0.1 (Jalving et al., 2017) in JuMP Julia.

» PlasmoAlgorithm.jl: Julia package that implements decomposition

algorithms using Plasmo graphs as input.

wasne PLASMO
LGORITHMS
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Applications of the Algorithm

> Stochastiic BadlingePRobbdenwetht i 6iirdetaSt Seleation

» Crude Selection and Refinery Optimization Under Uncertainty (Yang and
Barton, 2016)

» Storage Design for a Multi-product Plant under Uncertainty (Rebennack et
al. 2011)
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Stochastic Pooling Problem with Contract Selection

» Stage 1 decisions: feeds and pools selection (binary), feeds and pools
capacity(continuous).

» Stage 2 decisions: contract selection for feeds (binary), amount of feeds
purchased under each contract, mass flow rate (continuous).

» Constraints: capacity limitation, mass balance, quality specifications (bilinear),
contract selection.

» Sources of Uncertainty: Demand of products. Price of feeds. Selling price of
products.

18



Stochastic Pooling Problem with Contract Selection

Case study — 3 scenario problem

Possible structure Stage 1 decisions
Feed i Pool /

Feed i Pool / Product j cedt 00
@ 11 il I 247.1
O, ,2 )

2
O, B

i3
14 500.0

Cost =2414.98
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Stochastic Pooling Problem with Contract Selection

Case study — 3 scenario problem

Second stage decisions—low demand

Product j

Contracts Discount
after certain | discount
amount

Profit = 2785.87
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Stochastic Pooling Problem with Contract Selection

Case study — 3 scenario problem

Second stage decisions—high demand  reed; Pool / Product
Contracts Discount
after certain | discount
amount
Feed 1 300.0
Feed 2 201.9
Feed 5 245.2

Profit =4419.94
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Stochastic Pooling Problem with Contract Selection

#Variables: 9 binary, 9 continuous in stage 1. 32 binary, 112 continuous in stage 2 per scenario.
#Constraints: 18 linear stage 1. 116 linear, 22 nonlinear stage 2 per scenario.

Deterministic Equivalent

__#Scemarios |3 | 9 | 27

BARON 18.5.8 5/0.1 3005/0.1 104/8.7
ANTIGONE 1.1  16/0.1 251/0.1 104/1.4 Walltime/gap
SCIP 5.0 104/54.4  104100.0  104/100.0

Decomposition Algorithms

___ #Scenarios | 3 | 9 | 27

GBD (with cuts)+L 152/0.1 502/0.1 2113/0.1 Closes the gap at the root node

1 1 1
LD:Lagrangean Decomposition
GBD-L 104/0.1  104/0.8 104/1.3 L:Lagrangean cus
381 39 7 GBD:Generalized Benders Decomposition
104/0.2  104/7.1  104/12.2 .
LD 363 43 9 Walltime/gap

#nodes
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Conclusions and Future Work

» Cutting planes can potentially reduce the number of nodes in the proposed Generalized
Benders decomposition-based branch and cut algorithm

» Heuristics on when to add the cutting planes should be proposed in the future

L1, Can, and Ignacio E. Grossmann. "A generalized Benders decomposition-based
branch and cut algorithm for two-stage stochastic programs with nonconvex

constraints and mixed-binary first and second stage variables." Journal of Global
Optimization 75.2 (2019): 247-272.
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