

On Solving Nonconvex Two-Stage Stochastic Programs with Generalized Benders Decomposition

Can Li, Ignacio E. Grossmann

Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University

Stochastic Mixed Integer Programming (SMIP)

$$\min \quad c^T x + \sum_{\omega \in \Omega} \tau_\omega d^T y_\omega$$

s.t. Ax = b

$$W_{\omega}y_{\omega} = h_{\omega} - T_{\omega}x \quad \forall \omega \in \Omega$$

$$x \in X, \quad X = \left\{ x : x_i \in \{0,1\}, \forall i \in I_1, \ 0 \le x \le x^{ub} \right\} \quad \text{(Mixed) integer recourse}$$

$$y_{\omega} \in Y \quad \forall \omega \in \Omega, \quad Y = \left\{ y : y_j \in \{0,1\}, \forall j \in J_1, \ 0 \le y \le y^{ub} \right\}$$

Benders decomposition cannot be applied directly.

In order to apply Benders decomposition

Try to solve subproblem: min $d^T y_{\omega}$

s.t.
$$W_{\omega}y_{\omega} = h_{\omega} - T_{\omega}x^k \quad \forall \omega \in \Omega$$

$$y_{\omega} \in Y \quad Y = \{y : y_j \in \{0, 1\}, \forall j \in J_1, \ 0 \le y \le y^{ub}\}$$

No strong duality in the subproblem

Stochastic Mixed Integer Programming (SMIP)

In order to apply Benders decomposition

Convexified Subproblem: min $z_{\omega} = d^T y_{\omega}$

s.t.
$$W_{\omega}y_{\omega} = h_{\omega} - T_{\omega}x^{k}$$

 $0 \le y_{\omega} \le y^{ub}$
 $\alpha_{l\omega}x + \beta_{l\omega}y_{\omega} \le \gamma_{l\omega} \quad \forall l \in L$ Cutting planes

Cuts valid for set $S_{\omega} = \{(x, y_{\omega}) | W_{\omega} y_{\omega} = h_{\omega} - T_{\omega} x, y_{\omega} \in Y, 0 \le x \le x^{ub} \}$

MILP:

Gomory cuts	Lift-and-project cuts	RLT	СРТ
Gade et at., 2014	Caroe and Tind, 1998	Sherali and Fraticelli, 2002	Qi and Sen, 2017

Few works have been reported for MINLP

RLT: Reformulation Linearization Technique CPT: Cutting Plane Tree

Stochastic Mixed Integer Nonlinear Programming



Assumption 1 Problem (P) has relatively complete recourse, i.e., any solution x that satisfies the first stage constraints has feasible recourse decisions in the second stage.

Assumption 2 The feasible region of (P) is compact.

Assumption 3 x^{ub} and y^{ub} are finite, i.e., both the first and the second stage decisions are bounded.

Previous Work

> Pure binary first stage variables

- Nonconvex Generalized Benders Decomposition (Li et al., 2011)
- Mixed-integer first stage variables
 - A joint decomposition algorithm that has convex Benders subproblems (Ogbe and Li, 2018)
 - Perfect Information-based branch and bound (Cao and Zavala, 2017)
 - Modified Lagrangean decomposition-based branch and bound (Kannan and Barton, 2018)

Branch and bound tends to have slow convergence computationally

Branch and cut

Solution Strategy

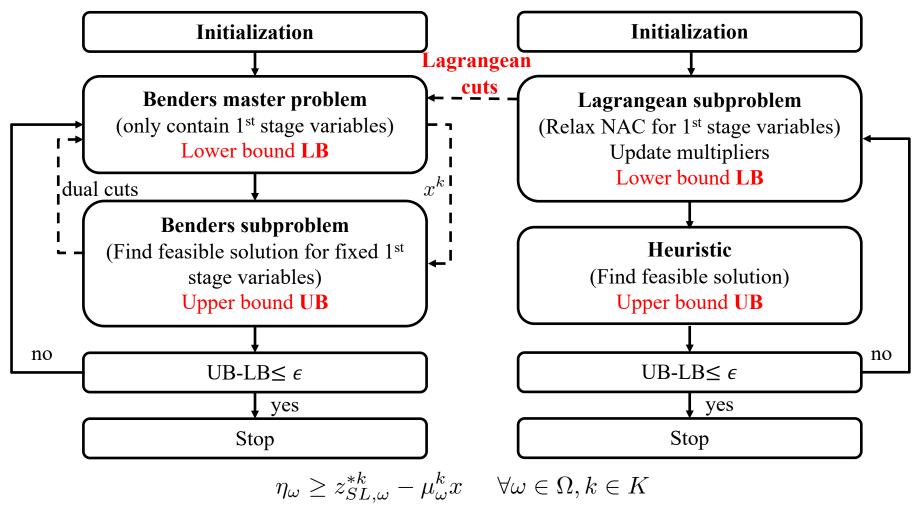
- > At high level: **Spatial branch and bound** to solve the problem to optimality
 - Branch on the **first stage variables**
- At low level: Each node in the BAB process is solved by Generalized
 Benders-like decomposition algorithm with cutting planes
- > Two types of **valid inequalities** in the Benders **master** problem
- Lagrangean cuts
 - Combine with Lagrangean decomposition
- **Benders cuts**

Convexify the Benders subproblem with **cutting planes**

Lagrangean cuts

Benders decomposition

Lagrangean decomposition



Mitra et al. 2016

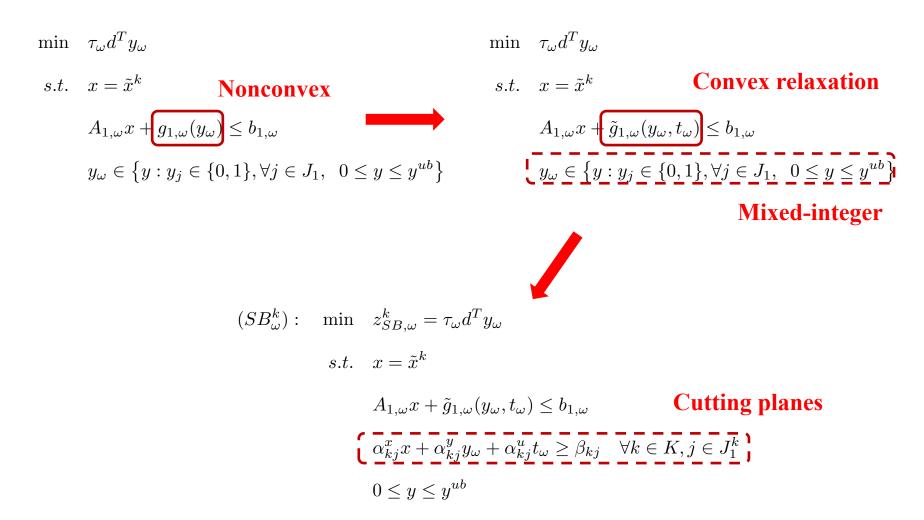
Lagrangean cuts

Proposition 1 $\eta_{\omega} \geq z_{SL,\omega}^{*k} - \mu_{\omega}^k x$ is valid for the Benders master problem.

Proposition 2 The Benders master problem with the Lagrangean cuts yields a lower bound that is at least as tight as using Lagrangean decomposition.

Li and Grossmann (2018)

Benders cuts



Now the subproblem is continous and convex

9

Benders Master Problem

$$(MB^{k}): \min \ z_{MB}^{k} = \sum_{\omega} \eta_{\omega}$$
s.t. $A_{0}x \ge b_{0}, \quad g_{0}(x) \le 0$
 $\eta_{\omega} \ge z_{SL,\omega}^{*l} - \mu_{\omega}^{l}x \quad \forall \omega \in \Omega, l \in L$ Lagrangean cuts
 $\eta_{\omega} \ge z_{SB,\omega}^{*k} + (\lambda_{\omega}^{k})^{T}(x - \tilde{x}^{k}) + \tau_{\omega}c^{T}x \quad \forall \omega \in \Omega, k \in K$ Benders cuts
 $x \in X, \quad X = \{x : x_{i} \in \{0, 1\}, \forall i \in I_{1}, \ 0 \le x \le x^{ub}\}$

Still has duality gap. Need to do spatial branch and bound.

GBD-based Branch and Cut

Problem Solved at node *q*

$$(P_q) \quad \min \quad c^T x + \sum_{\omega \in \Omega} \tau_\omega d^T_\omega y_\omega$$

$$A_0 x \ge b_0, \quad g_0(x) \le 0$$

$$A_{1,\omega} x + g_{1,\omega}(y_\omega) \le b_{1,\omega} \quad \forall \omega \in \Omega$$
Branch on stage 1 variables.
$$x \in X_q, \quad X_q = \left\{ x : x_i \in \{0,1\}, \forall i \in I_1, \ x_q^{lb} \le x \le x_q^{ub} \right\}$$

$$y_\omega \in Y \quad \forall \omega \in \Omega, \quad Y = \left\{ y : y_j \in \{0,1\}, \forall j \in J_1, \ 0 \le y \le y^{ub} \right\}$$

We can solve each (P_q) by generalized Benders decomposition with Lagrangean cuts.

Node Selection & Branching Rules

Node Selection rule

Select node q such that $q = \underset{q \in \Gamma}{\operatorname{arg min}} LB_q$.

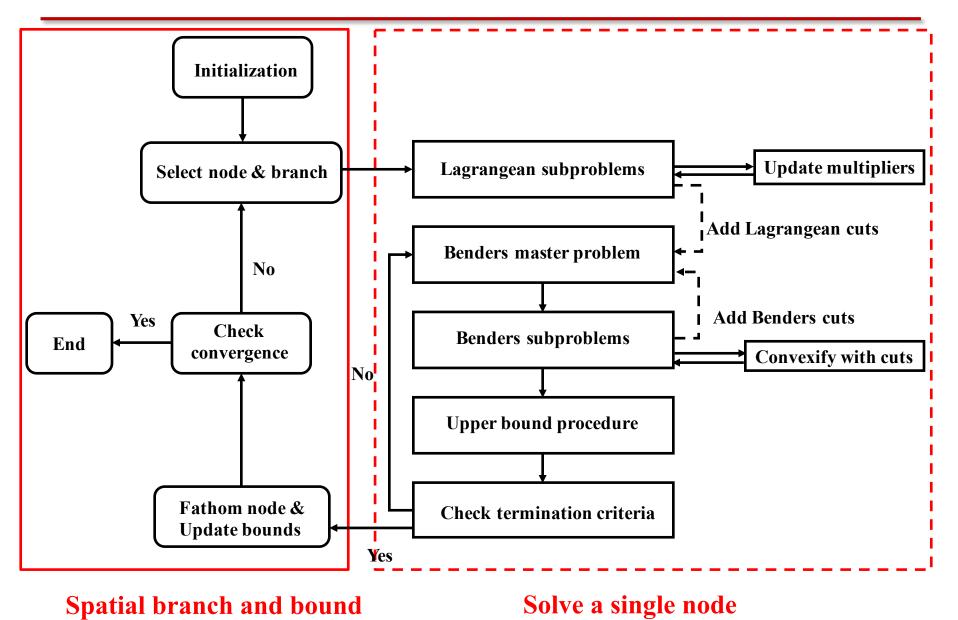
Branching rule example

Select the first stage variable with the largest normalized relative diameter,

$$i^* = \operatorname*{argmax}_{i \in I} \frac{(x_q^{ub})_i - (x_q^{lb})_i}{(x_{q_0}^{ub})_i - (x_{q_0}^{lb})_i} \delta_i$$

 q_0 represents the root node. δ_i is a normalization factor for variable *i*. Two new nodes q_1 and q_2 are then created and bisect the domain of variable i^* .

GBD-based Branch and Cut



Definition

Definition 1 A subdivision is called exhaustive if $\lim_{p\to\infty} \delta(X_{q_p}) = 0$, for all decreasing subsequences X_{q_p} generated by the subdivision.

Definition 2 A selection operation is said to be bound improving if, after a finite number of steps, at least one partition element where the actual lower bounding is attained is selected for further partition.

Definition 3 The "deletion by infeasibility" rule throughout a branch and bound procedure is called certain in the limit if, for every infinite decreasing sequence $\{X_{q_p}\}$ of successively refined partition elements with limit \bar{X} , we have $\bar{X} \cap D \neq \emptyset$.

Definition 4 A lower bounding operation is called strongly consistent if, at every iteration, any undeleted partition set can be further refined and if any infinite decreasing sequence $\{X_{q_p}\}$ successively refined partition elements contains a sub-sequence $\{X_{q_{p'}}\}$ satisfying $\bar{X} \cap D \neq \emptyset$, $\lim_{p \to \infty} LB_{q_p} = z^*(\bar{X} \cap D)$, where $\bar{X} = \bigcap_p X_{q_p}$.

Horst and Tuy (2013)

Convergence

Lemma 1 The subdivision process of the proposed algorithm is exhaustive.

Lemma 2 The selection operation of the proposed algorithm is bound improving.

Lemma 3 Deletion by infeasibility is certain in the limit in the proposed algorithm.

Lemma 4 The proposed algorithm is strongly consistent.

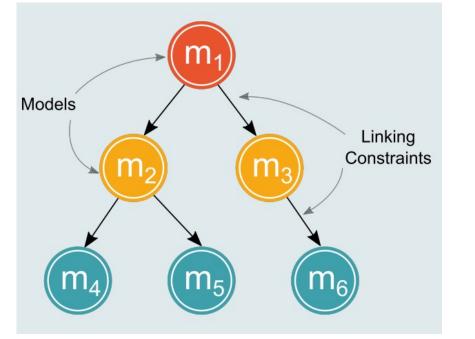
Theorem 1 The proposed algorithm is convergent, i.e., $\lim_{q \to \infty} LB_q = \lim_{q \to \infty} UB_q = z^*$.

Horst and Tuy (2013)

Implementation

> Implemented using **Plasmo** v0.0.1 (Jalving et al., 2017) in **JuMP Julia**.

PlasmoAlgorithm.jl: Julia package that implements decomposition algorithms using Plasmo graphs as input.

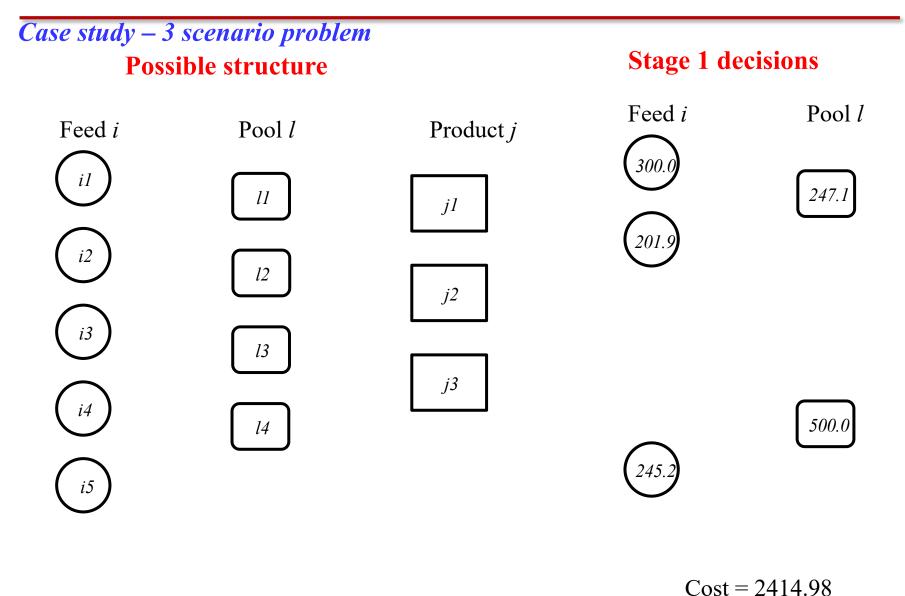


Applications of the Algorithm

> Stochastic Redling Problem with & Ontretota St Selection

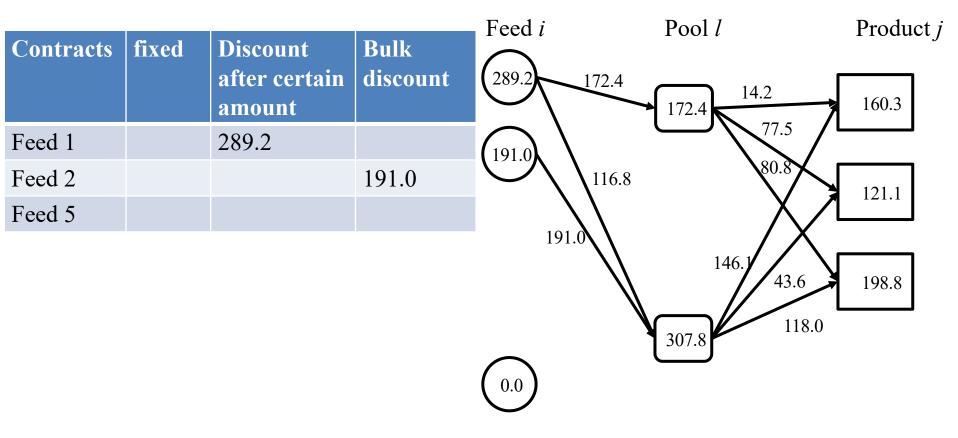
- Crude Selection and Refinery Optimization Under Uncertainty (Yang and Barton, 2016)
- Storage Design for a Multi-product Plant under Uncertainty (Rebennack et al. 2011)

- Stage 1 decisions: feeds and pools selection (binary), feeds and pools capacity(continuous).
- Stage 2 decisions: contract selection for feeds (binary), amount of feeds purchased under each contract, mass flow rate (continuous).
- Constraints: capacity limitation, mass balance, quality specifications (bilinear), contract selection.
- Sources of Uncertainty: Demand of products. Price of feeds. Selling price of products.



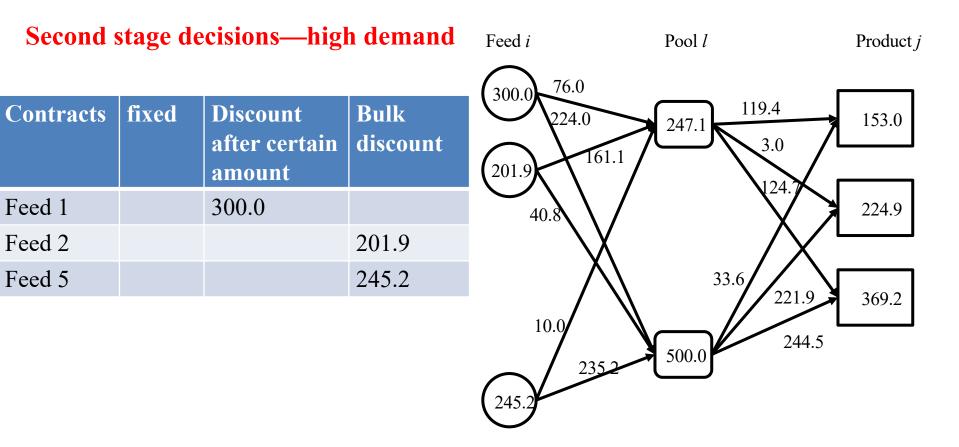
Case study – 3 scenario problem

Second stage decisions—low demand



Profit = 2785.87

Case study – 3 scenario problem



Profit = 4419.94

#Variables: 9 binary, 9 continuous in stage 1. **32 binary,** 112 continuous in stage 2 per scenario. **#Constraints:** 18 linear stage 1. 116 linear, **22 nonlinear** stage 2 per scenario.

Deterministic Equivalent

#Scenarios	3	9	27
BARON 18.5.8	5/0.1	3005/0.1	104/8.7
ANTIGONE 1.1	16/0.1	251/0.1	104/1.4
SCIP 5.0	104/54.4	104/100.0	104/100.0

Walltime/gap

Decomposition Algorithms

#Scenarios	3	9	27
GBD (with cuts)+L	152/0.1	502/0.1	2113/0.1
ODD (with cuts) + L	1	1	1
	104/0.1	104/0.8	104/1.3
GBD+L	381	39	7
ID	104/0.2	104/7.1	104/12.2
LD	363	43	9

Closes the gap at the root node

LD:Lagrangean Decomposition L:Lagrangean cuts GBD:Generalized Benders Decomposition

Walltime/gap #nodes

Conclusions and Future Work

- Cutting planes can potentially reduce the number of nodes in the proposed Generalized Benders decomposition-based branch and cut algorithm
- > **Heuristics** on when to add the cutting planes should be proposed in the future

Li, Can, and Ignacio E. Grossmann. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables." Journal of Global Optimization 75.2 (2019): 247-272.

Acknowledgment

- Prof. Paul Barton
- Dr. Rohit Kannan

