
Diagnosing Infeasible Optimization Problems Using Large Language Models

Hao Chen1, Gonzalo E. Constante-Flores1, Can Li1

1Purdue University
{chen4433, geconsta, canli}@purdue.edu

Abstract

Decision-making problems can be represented as mathemati-
cal optimization models, finding wide applications in fields
such as economics, engineering and manufacturing, trans-
portation, and health care. Optimization models are mathe-
matical abstractions of the problem of making the best de-
cision while satisfying a set of requirements or constraints.
One of the primary barriers to deploying these models in
practice is the challenge of helping practitioners understand
and interpret such models, particularly when they are infea-
sible, meaning no decision satisfies all the constraints. Ex-
isting methods for diagnosing infeasible optimization models
often rely on expert systems, necessitating significant back-
ground knowledge in optimization. In this paper, we intro-
duce OptiChat, a first-of-its-kind natural language-based sys-
tem equipped with a chatbot GUI for engaging in interactive
conversations about infeasible optimization models. OptiChat
can provide natural language descriptions of the optimization
model itself, identify potential sources of infeasibility, and
offer suggestions to make the model feasible. The implemen-
tation of OptiChat is built on GPT-4, which interfaces with
an optimization solver to identify the minimal subset of con-
straints that render the entire optimization problem infeasible,
also known as the Irreducible Infeasible Subset (IIS). We uti-
lize few-shot learning, expert chain-of-thought, key-retrieve,
and sentiment prompts to enhance OptiChat’s reliability. Our
experiments demonstrate that OptiChat assists both expert
and non-expert users in improving their understanding of the
optimization models, enabling them to quickly identify the
sources of infeasibility.

Introduction
Mathematical optimization has wide applications in real-
world decision-making problems such as aircraft crew
scheduling, smart grid operation, and portfolio optimization
(Rardin 2016). Most of these applications can be formulated
as a mixed-integer linear program (MILP):

min
x

c⊺x

subject to Ax ≤ b,

x ∈ Zp ×Rn−p.

(1)

where decisions to make are denoted as x that consist of both
integer and continuous variables; c represents the cost coef-
ficients; the problem is subject to linear constraints Ax ≤ b:

Lorem Ipsum is simply
dummy text of the

printing and typesetting
industry

1. Model-related questions
2. Recommendation request
3. Action explanation
4. Optimization-related
 questions

1. Decision variables
2. Fixed and adjustable
 parameters
3. Constraints and
 objective
4. Additional comments

1. Expert Chain-of-
 Thought
2. Few-shot Learning
3. Key-retrieve
4. Sentiment

1. Solution status
2. Irreducible Infeasible Subset (IIS)
3. Value of adjusted parameter(s)

OptiChat

Use
r

Prompting techniques
 Tasks

 Optim
izatio

n
m

od
el

T1. Model Analysis
T2. Infeasibility
 diagnosis
T3. Troubleshoot
 recommendation
T4. Interactive
 conversation

Autonomous
function call

Figure 1: Overview of OptiChat. Users can directly interact
with OptiChat using natural language without writing a sin-
gle line of code. OptiChat is an LLM-powered autonomous
agent system.

A ∈ Rm×n, b ∈ Rm. An infeasible (1) means that there exists
no solution x ∈ Zp ×Rn−p that satisfies all the constraints.

The optimization community has come up with differ-
ent mathematical concepts to characterize infeasible opti-
mization models: the most commonly used one is the Ir-
reducible Infeasible Subset (IIS) (Chinneck and Dravnieks
1991), which refers to a minimal subset of constraints and/or
variable bounds within an optimization model that is infea-
sible. An ISS is a subset of an infeasible model with two
properties: (i) the ISS is infeasible, and (ii) any proper sub-
set of the ISS is feasible. (see Figure 2 for an illustrative
example). By isolating the core conflicting constraints, IIS
can help analyze and diagnose infeasible models.

Optimization experts can gain insight into what causes
the infeasibility from the IIS. However, practitioners without

ar
X

iv
:2

30
8.

12
92

3v
1

 [
cs

.H
C

]
 2

3
A

ug
 2

02
3

A

B

C

(a) Original constraint set

B

C

(b) Remove constraint A

A C

(c) Remove constraint B

A

B

(d) Remove constraint C

Figure 2: Example of Irreducible Infeasible Subset (IIS).
The feasible region of each constraint is colored. The origi-
nal constraint set, S = {A,B,C} is infeasible since no solu-
tion satisfies the three constraints. However, any proper sub-
set is a feasible constraint set, i.e., if any of the constraints
are dropped, then the constraint set becomes feasible.

much knowledge of mathematical programming often treat
these models as black boxes. Therefore, when practitioners
encounter an infeasible optimization model, their ability to
find the root causes and take corrective actions is limited. To
resolve this, a Human-Computer Interaction (HCI) system
is needed to help humans diagnose infeasible optimization
models.

One of the pioneering efforts to develop an HCI tool for
analyzing infeasible optimization models is the ANALYZE
system (Greenberg 1983, 1987) developed in the 1980s, an
expert system that relies on a specific syntax tailored for op-
timization problems. The downside of expert systems is that
they still require a fair amount of domain knowledge and
optimization background. In the pioneering paper (Green-
berg 1983), the author insightfully foresaw that “Ideally, one
would like to move toward a natural language query system
where the descriptions are resident with the model in a way
that permits more automation to obtain answers.” However,
to the best of our knowledge, such a natural language-based
system envisioned by Greenberg has not been developed due
to the lack of a general-purpose language model. Recently,
large language models (LLMs) such as GPT-4 (OpenAI
2023) and LLaMA (Touvron et al. 2023) have achieved re-
markable success in diverse applications, opening new ways
of developing software for analyzing optimization models.

In this paper, we develop OptiChat, a chatbot for provid-
ing natural language explanations of infeasible optimization
models and receiving questions and feedback from human
users, taking advantage of the GPT-4 APIs. To this end,
OptiChat interacts with an optimization solver to identify
the IIS and modify the model parameters by adding slack
variables to make the model feasible based on human feed-

back. We use state-of-the-art prompting techniques, such as
few-shot learning, expert chain-of-thought, and sentiment
prompting to make the process robust. Additionally, we pro-
pose a key-retrieve prompting technique to improve Op-
tiChat’s robustness further.

Related Works
Algorithms for Isolating IIS Constraints
A simple algorithm to isolate an IIS is the deletion filter
(Chinneck and Dravnieks 1991) where each constraint is
first tentatively dropped from the constraint set; if the prob-
lem becomes feasible, then the constraint will be returned
to the constraint set; otherwise, the constraint is kept perma-
nently. A single iteration over all the constraints is guaran-
teed to find an IIS. Other IIS isolation methods include the
additive method (Tamiz, Mardle, and Jones 1996) and the
combination of the deletion filter and the additive method
(Guieu and Chinneck 1999). IIS isolation algorithms have
been implemented in commercial optimization solvers such
as CPLEX (IBM 2022), Gurobi (Gurobi Optimization, LLC
2022), and Mosek (MOSEK ApS 2023, § 14.2). Infeasible
linear programs can be repaired by adding slack variables
to each constraint and penalizing the slacks in the objective
function. A complete review of IIS detection can be found
in the monograph (Chinneck 2008).

Expert Systems for Optimization Models
Expert systems, such as ANALYZE (Greenberg 1983, 1987,
1993a,b), emerged in the 1980s to analyze optimization
models. ANALYZE is equipped to diagnose infeasibility,
conduct sensitivity analysis, and generate views for lin-
ear programming problems. Commercial software such as
AMPL (Fourer, Gay, and Kernighan 1989), AIMMS (Biss-
chop and Roelofs 2004), and GAMS (Bussieck and Meeraus
2004) offer algebraic modeling languages specifically tai-
lored for optimization problems. These modeling platforms
also provide capabilities for the analysis and visualization of
results. In recent years, open-source modeling libraries like
Pyomo (Hart, Watson, and Woodruff 2011) and JuMP (Lu-
bin et al. 2023) have been introduced, leveraging the Python
and Julia programming languages, respectively. A notable
advantage of these open-source libraries is their flexibil-
ity, allowing programmers and optimization experts to inte-
grate them smoothly with other libraries. However, a signif-
icant limitation of these expert systems is their reliance on
programming-language-like syntax. This necessitates a ro-
bust background in both optimization and programming for
users to effectively interpret optimization models and their
results.

Natural Language Dialogue Systems for Machine
Learning Models
To the best of our knowledge, no natural language systems
exist for optimization models. However, a related topic is
the natural language dialogue systems for explaining ma-
chine learning models. The prototype design of these inter-
active dialogue systems is typically equipped with function-
alities that explain the potential impact of input modifica-

Pyomo Code

User

Model
Analysis

Infeasibility
Diagnosis

Troubleshoot
Recommendation

OptiChat

Imagine you are a warehouse manager, tasked with the complex job of managing the production,
storage, and workforce of your facility. You have a wealth of data at your disposal, including ... and the
demand schedule for your goods. Your job is to make several key decisions. You need to determine ...
and how many workers to hire or fire. However, these decisions are not made in a vacuum. They are
subject to several constraints: the number of goods stored in each period must be equal to the initial
stock of goods plus the production level minus the demand ... Your ultimate goal is to minimize the
total cost of ...

The following constraints are causing the model to be infeasible: 1. The Commodity Balance
Constraint: This constraint ensures the number of goods stored is equal to the number of goods
stored in the previous period plus the production level minus the demand. 2. The Worker Balance -
Between Periods Constraint: ... 3. The Worker Balance - Job Differentiation Constraint: ...

... you might want to change the demand schedule and the initial number of workers to make
the model feasible. The demand schedule can be adjusted based on market research and
customer feedback, and it is a more flexible parameter. The initial number of workers can also be
adjusted by hiring or firing workers, which is a common practice in businesses to match the
workforce with the demand. However, changing the trainer capability and worker productivity
might not be feasible as they are related to the skills and abilities of the workers, which cannot
be easily changed. Similarly, the initial stock of goods is dependent on the production and
supply chain, which might not be easy to adjust in the short term.

User
Specific Questions about Model
What is the most likely conflict among these constraints that you believe is causing the infeasibility?

OptiChat
The most likely conflict could be between ... When demand is high, the model could be forcing high production levels to
satisfy the commodity balance constraint, which in turn requires a large number of workers to meet such production
levels. However, ... to hire or fire enough workers is not flexible enough ... Therefore, I suggest ...

OptiChat
Sure, based on the optimization model, to make the model feasible, you would need to increase the initial stock of goods for
the first period by approximately 3.34 units via inventory redistribution. This will create a balance with the production level
and demand schedule ... This change will allow your operations to meet the demand schedule without overstraining the
productivity of your workers and without requiring extensive hiring of new workers.

OptiChat
Adjusting the initial stock of goods ... thus creating less pressure on your production team and workforce to meet high
demands within tight deadlines ... keep in mind it could also lead to increased storage and holding costs ...

User
Additional Information about Problem
Our warehouse can request for additional goods via inventory redistribution. Which one do you think is more practical to change?

User
Request for Troubleshooting
The number of goods available for redistribution is limited. Can you help me figure out the number of goods that we need exactly?

User
Follow-up Questions or Other Requests
......

Figure 3: Illustrative conversation. This example shows how the OptiChat agent conducts model analysis, infeasibility diag-
nosis, troubleshoot recommendations, and interactive conversations through the GUI.

tion on output (Sokol and Flach 2018; Wexler et al. 2020),
which reflects the model’s decision-making in different situ-
ations. Converting these explanations into natural language
dialogues is more effective in convincing users (Feldhus,
Ravichandran, and Möller 2022). Previous designs only ad-
dress questions within specific contexts and lack flexibil-
ity. TalkToModel (Slack et al. 2023) is a recently developed
chatbot for explaining ML models by combining LLMs with
external tools such as counterfactual explanations.

Prompt Engineering
For the LLM to operate with high accuracy, crafting the right
prompts is crucial. Prompt Engineering encompasses meth-
ods that direct the behavior of LLM towards specific results
without altering its weight parameters. In zero-shot learn-
ing, one simply provides the task description to the model

and awaits the output. Few-shot learning (Zhao et al. 2021)
introduces a set of exemplary demonstrations, each compris-
ing both the input and the anticipated output for the target
task. Chain-of-thought (CoT) prompting (Wei et al. 2022)
produces a series of concise sentences, each detailing a step
in the reasoning process, eventually resulting in the final an-
swer. For an updated review on prompt engineering, we refer
to the blog (Weng 2023).

Method
OptiChat is an interactive dialogue system that facilitates
seamless troubleshooting through natural language-based
questions and requests by non-experts. As shown in Fig-
ure 1, it is an agent-based autonomous system that coor-
dinates the user, the optimization model, the optimization
solver, and the LLM. The non-expert user is interested in

understanding the optimization model written in an alge-
braic modeling language, in this case, the Pyomo/Python
modeling framework. The Pyomo model has symbolic ex-
pressions of the decision variables, the input parameters, the
constraints, and the objective. The optimization solver can
be used to solve the Pyomo model; obtain the solution status;
retrieve the IIS if the model becomes infeasible; and solve
the model with adjusted parameters to make it feasible. Most
importantly, the LLM functions as the brain of the agent: it
processes the optimization model to provide the user with
natural language descriptions; engages in conversations with
the user; understands which parameters should be changed,
and decides when to use the optimization solver based on the
conversations. Given the functions of these agents, OptiChat
can accomplish four major tasks: provide the user with a
contextual model description; analyze the potential sources
of infeasibility, give recommendations for making the model
feasible, and have interactive conversations with the user to
answer follow-up questions. In what follows, we first pro-
vide an illustrative example of using OptiChat to showcase
a typical workflow of infeasibility diagnosis. Second, we de-
scribe the technical details of how the optimization solver is
used to isolate the IIS and make the model feasible. Third,
we explain how the LLM coordinates the user input, the op-
timization model, and the solver.

Illustrative Conversations with OptiChat
Before delving into the technicalities, we present an illus-
trative example of the on-the-job training problem, adapted
from the GAMS modeling library 1. This example, show-
cased in Figure 3, demonstrates user interaction with Op-
tiChat. Initially, OptiChat receives an infeasible Pyomo in-
stance related to the on-the-job training problem. Subse-
quently, it offers the user a clear overview of the prob-
lem. Causes of infeasibility are diagnosed and conveyed to
the user in easily understandable language. Moreover, Op-
tiChat suggests measures to regain feasibility. After this ini-
tial analysis, users are free to pose further questions about
the model. For instance, they can inquire about key con-
flicts within the on-the-job training problem or even request
changes to the model’s data to find feasible solutions.

Usage of the Optimization Model and Solver
The LLM itself cannot provide an end-to-end solution for
infeasibility diagnosis. The two other agents in Figure 1,
the optimization model and the optimization solver are in-
dispensable for OptiChat to have a robust performance. In
this subsection, we explain how the optimization model and
solver are used for identifying the IIS and recovering the fea-
sibility. To this end, we first illustrate how an optimization
expert would diagnose an infeasible optimization model,
which will be used as the basis for prompting the LLM. Op-
timization experts typically begin with the code or mathe-
matical formulation to understand the underlying problem
represented by the model. To identify the causes of infeasi-
bility, experts typically compute the IIS of the model to rec-
ognize the main conflicts, which allows them to extract valu-

1https://www.gams.com/latest/gamslib ml/libhtml/index.html

able insights from a subset of constraints. Next, to resolve
the infeasibility, optimization experts either remove some of
the constraints from IIS or add slack variables.

Computing IIS We use the optimization solver, Gurobi, to
compute the IIS. Gurobi uses different algorithms for com-
puting IIS for linear programs and mixed-integer linear pro-
grams. For linear programming problems, i.e., x ∈ Rn, it
was shown in (Gleeson and Ryan 1990) that the support (in-
dices corresponding to the nonzero values) of any vertex of
the following polyhedral set

P = {y ∈ Rm∣y⊺A = 0,y⊺b ≤ −1,y ≥ 0} (2)

gives an IIS. Therefore, enumerating over all the IIS is
equivalent to enumerating to the vertices of P . This claim
can be proved using the Farkas’ lemma (Gleeson and Ryan
1990).

For mixed-integer linear programs, the Farkas’ lemma ar-
gument is no longer applicable. In this case, Gurobi uses
logic-based methods such as deletion filter and additive
method reviewed in the previous section.

Resolving Infeasibility Optimization experts have two
different ways of restoring feasibility: (1) remove the con-
straints detected by the IIS algorithms recursively until the
model becomes feasible; (2) add slack variables to the op-
timization problems by changing the input parameters. Op-
tiChat takes the second approach because removing the con-
straints may not be practical in real-world applications. On
the other hand, the slack-variable approach can give the
decision-maker a concrete actionable plan for making the
model feasible. More precisely, we modify the parameters
in the matrix A and the right-hand side vector b in the orig-
inal MILP (1) by adding slack variables. Geometric inter-
pretations of adding the slack variables are shown in Figure
4.

A

B

C

(a) Rotate constraint A

A

C

B

(b) Translate constraint A

Figure 4: Effects of adding slack variables. (a) shows the
problem can be made feasible by adjusting the left-hand side
matrix A. (b) shows the effect of adding slack variable δb+

to the right-hand side. The region and the point in black rep-
resent the feasible regions after adding the slack variables.

Mathematically, the following extended problem is
solved,

min
x,δA+,δA−,δb+

∑
(i,j)∈SA

(δA+ij + δA
−
ij) + ∑

i∈Sb

δb+i

subject to (A + δA+ − δA−)x ≤ b + δb+,

x ∈ Zp ×Rn−p, δA+, δA−, δb+ ≥ 0.

(3)

where δA+, δA−, δb+ represent the slack variables. All
the slack variables added are nonnegative. Since we only
have inequality constraints, adding nonnegative slacks on
the right-hand side relaxes the problem. For the left-hand
side matrix, we have both δA+ and δA−. Note that the slack
variables have different dimensionality compared with the
parameters A and b. This is because only a subset of the
parameters can be adjusted in practice. Determining which
parameters to change is based on the judgment of the LLM
and the request of the user, which will be discussed in the
next subsection. The support sets of the slack variables are
denoted as SA and Sb, respectively. The objective is to mini-
mize the total perturbation to the original problem by adding
up all the slack variables. In principle, we could assign dif-
ferent weights to different slack variables representing the
cost associated with changing the corresponding parameters.

When the support set SA is empty, i.e., only the right-
hand side parameters are perturbed, problem (3) remains to
be a mixed-integer linear program (MILP), which can be
solved as fast as the original problem (1). However, when
set SA is nonempty, we will have the product of variables
δA+, δA− with x, which leads to a nonconvex mixed-integer
quadratically constrained program (MIQCP). MIQCPs are
computationally much more expensive than MILPs. Further-
more, most of the left-hand side parameters in optimiza-
tion problems correspond to physical properties that can-
not be changed easily. Therefore, OptiChat is designed such
that the left-hand parameters are not recommended to be
changed unless the user insists. We will describe how to
achieve this in the next subsection.

Implementation and LLM Prompt Engineering
The LLM plays a central role in understanding the user’s re-
quest and executing the optimization solver. OptiChat uses
four prompting techniques to guarantee the reliability of per-
forming the tasks.

• Expert chain-of-thought (CoT) We provide the LLM
step-by-step instructions similar to how an optimization
expert would approach each task.

• Few-shot Several simple examples of optimization prob-
lems are provided with expert answers.

• Key-retrieve We design this prompting technique tai-
lored for OptiChat where we retrieve the keys of the pa-
rameter and the constraint names from the Pyomo code
to improve robustness.

• Sentiment We prompt the LLM to understand the user’s
sentiment.

The application of these prompting techniques to the four
major tasks of OptiChat is summarized in Table 1. In what
follows, we describe how these prompting techniques are
used in each task in combination with GPT-4’s function-
calling capability.

Model analysis We first use the Pyomo optimization tools
to extract the model parameters and constraints from the
code and embed their names in the prompt. In other words,
we provide the LLM with the keys that are required to re-
trieve before instructing it to perform any action, namely

Table 1: Prompting techniques used in the four main tasks of
OptiChat: (T1) Model analysis; (T2) Infeasibility diagnosis;
(T3) Troubleshoot recommendation (T4) Interactive conver-
sation.

Expert CoT Few-shot Key-retrieve Sentiment

T1 ✓ ✓ ✓
T2 ✓ ✓ ✓
T3 ✓ ✓
T4 ✓

the key-retrieve prompt. We empirically found that this key-
retrieve prompt significantly reduces the rate of mismatch-
ing and misidentification when compared with summarizing
the code directly. Second, we provide the steps an optimiza-
tion expert would follow to describe the model (Expert CoT
prompt), i.e., first provide an overview of the model, then
summarize the input parameters, the decisions to be made,
and the constraints. Third, few-shot demonstrations of the
classic traveling salesman problem and the knapsack prob-
lem are used at each step of the Expert CoT.

Infeasibility Diagnosis When given an infeasible opti-
mization, OptiChat uses Gurobi to find the IIS, returned as
expressions of the constraints, with modeling parameters in
numerical forms. OptiChat maps these constraints back to
symbolic form to have a sensible natural language explana-
tion. Expert CoT, few-shot, and key-retrieve prompting are
used to generate reasonings for the infeasibility similar to
the model description.

Troubleshoot Recommendation Parameters involved in
the IIS are extracted using Pyomo modeling APIs. Recom-
mendations are made to the user based on whether these pa-
rameters can be changed at low costs in the real world. An-
other criterion is trying to avoid changing the left-hand side
parameters so that the model is kept to be an MILP. These
considerations are conveyed to the LLM through expert CoT
and few-shot prompting where several examples of parame-
ters and their adjustability in the real world are given to the
LLM, e.g., the capacity of a storage vessel can be expanded
but the number of hours in a day cannot be changed.

Interactive Conversation Advanced LLM like GPT-4
(OpenAI 2023) provides chatbot APIs that enable the user to
have interactive conversations. Besides answering the ques-
tions related to the model description and infeasibility anal-
ysis, one notable feature of OptiChat is that it can decide
when to solve the problem with slack variables in (3) based
on the conversations with the user. The user may agree or
disagree with the initial troubleshooting recommendations
provided by OptiChat in the previous step. Under certain
cases, the user may want to try changing the parameters that
OptiChat would not recommend. To handle this, we deploy
a sentiment prompting technique. This does not strictly pro-
hibit users from modifying them but gives rise to a warn-
ing about their consequences before the user’s confirmation.
After the user confirms the parameters to change, a function

calling API we implemented is executed to solve the opti-
mization problem (3) where only the parameters deduced
from the conversation with the user can be adjusted.

Experiments
In this section, we present a comprehensive overview of the
outcomes achieved by OptiChat.

We evaluate the effectiveness of our chatbot for under-
standing a wide variety of optimization models by perform-
ing a study on 8 inexperienced and 7 experienced users, who
troubleshoot 20 and 38 infeasible instances, respectively.
Through this real-world human study, we assess OptiChat’s
ease of use, response quality, and accuracy in interpreting
the models and guiding the users to repair them. The results
show that both groups of participants highlight the effective-
ness of OptiChat in understanding the optimization models
and simplifying the troubleshooting process of realistic op-
timization models.

Dataset preparation To assess OptiChat, we select sev-
eral feasible optimization models from the GAMS Model
Library2, the Pyomo Cookbook by the University of Notre
Dame3, and a Resource Task Network model4. The selected
problems correspond to a wide range of applications, includ-
ing aircraft allocation with uncertain demand, production
scheduling, production distribution and inventory, power
generation scheduling, oil refining, bid evaluation, ship al-
location, and military manpower planning.

Our dataset includes 63 infeasible instances generated by
changing the original optimization problems in two ways:
modifying a model parameter (e.g., minimum inventory, de-
mand, maximum capacity) or adding constraints (e.g., max-
imum cost, minimum demand of a particular product).

Infeasiblity Troubleshooting Assessment
In this subsection, we assess the time to analyze and trou-
bleshoot infeasible optimization models by experienced
users and the strategies they use to repair such models. Our
assessment is conducted using a survey with closed- and
open-ended questions.

The group of experienced users repaired 38 infeasible
optimization instances. The majority of the group reported
three repairing strategies: (i) verifying the irreducible in-
feasible subset, (ii) activating/deactivating constraints, and
(iii) relaxing constraints by adding slack variables. Despite
the effectiveness of such strategies, it is noteworthy that the
latter two strategies are prone to human errors and time-
consuming depending on the size of the model. We note that
such drawbacks can be circumvented by using HCI systems
(Greenberg 1983).

We breakdown the time to analyze and repair the opti-
mization model into the following tasks:

• Model analysis: Corresponds to the time it takes to read
the optimization model, i.e., the Pyomo script, and under-

2https://www.gams.com/latest/gamslib ml/libhtml/index.html
3https://jckantor.github.io/ND-Pyomo-Cookbook
4https://github.com/hdavid16/RTN-Demo

stand the model, e.g., identify the objective, constraints,
decision variables, and parameters.

• Model description: Pertains to the time it takes to write
a detailed description of the optimization model.

• Infeasibility diagnosis: Corresponds to the time it takes
to diagnose the potential causes of infeasibility, e.g., con-
flicting constraints and/or parameters.

• Infeasibility repair: Includes the time it takes to find a
feasible solution once the potential causes of infeasibility
have been detected.

Most users spend 15-30 minutes analyzing the optimiza-
tion model, as shown in Table 2. We note that the com-
pletion times vary according to the familiarity of the user
with the models. It is reasonable to assume that inexpe-
rienced users will require significantly more time to per-
form such tasks, highlighting the importance of the pro-
posed natural-language-based system. Additionally, most
optimization models in real-world applications are consid-
ered large-scale problems, i.e., problems with tens of thou-
sands of variables and constraints. Clearly, the size of the
optimization model could be, and generally is, detrimental
to the time required to repair such problems, even for expe-
rienced users.

Table 2: Infeasibility repair results: Percentage of users per
time slot across tasks.

Time (min)

Task <5 5-15 15-30 >30

Model analysis 7.9% 10.5% 76.3% 5.3%
Infeasibility diagnosis 28.9% 57.9% 10.5% 2.6%
Infeasibility repair 52.6% 39.5% 2.6% 5.3%

1-3 3-10 10-20 >20

Model description 26.3% 42.1% 5.3% 26.3%

OptiChat Assessment
In this subsection, we assess different criteria to evaluate
OptiChat’s performance, usability, and effectiveness, similar
to previous works that evaluate the coordination of human
and ML models. We recruited two groups of users with and
without experience in troubleshooting optimization models.
We asked the participants to repair a number of randomly
selected instances using OptiChat. Their utterances can in-
clude questions specific to the model, general optimization
questions, and troubleshooting recommendations. Similar to
the previous subsection, the assessment uses a survey with
close- and open-ended questions, allowing us to assess the
chatbot quantitatively and qualitatively, respectively.

Quantitative Results The survey includes questions and
statements with 1-5 Likert scale and open-ended questions
to gather qualitative user feedback. The statements aim to
evaluate the user experience, easiness of correcting chatbot
errors or misunderstandings, accuracy and insightfulness of
model interpretation, clarity of infeasibility explanation, and
quality of troubleshooting recommendations.

Inexperienced Users Experienced Users

Effective and helpful recommendations

Clear infeasibility explanation

Detailed and insightful model analysis

Accurate interpretation of the model

Easy to correct misunderstandings and errors

Intuitive for inputting the model

Easy initiating conversation

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Figure 5: User study results: Likert graph of survey statements.

Figure 5 shows the results of the quality assessment. For
both groups, the modes of the responses across all the in-
teractions lie in the somewhat agree to strongly agree cate-
gories except in the case of the statement about the easiness
of correcting misunderstandings and errors during the inter-
action with the chatbot in the group of experienced users
where the mode is neutral.

At the end of the survey, the participants were required
to report the chatbot’s answers that they considered unsatis-
factory due to misinterpretations of the questions or inaccu-
rate answers, which allows us to compute the percentage of
satisfactory answers with respect to the total. Additionally,
the participants reported their success rate for troubleshoot-
ing the assigned infeasible optimization instances using Op-
tiChat. Table 3 shows the high accuracy rate for both metrics
across the study groups.

Table 3: OptiChat’s accuracy results.

Study group Satisfactory Troubleshooting
answers success rate

Inexperienced 90.93% 88%
Experienced 87.20% 96.77%

Qualitative Results Based on the feedback provided in
the survey, we provide representative quotes. Participants
have highlighted the clarity of the explanations using easy-
to-understand language provided by OptiChat, which can be
helpful for users with different levels of optimization knowl-
edge,

It clearly explained the optimization problem in a sim-
ple and clear manner so that people without much
optimization background could also understand the
model. It also explains the meaning of different pa-
rameters and what it implies in the context of the
considered model and real-life feasibility. I liked the
feature of explaining complicated stuff with real-life
example, not related to the considered problem.—
Participant 1.

Participants also commented on the systematic under-

standing provided by OptiChat, which is achieved due to two
prompt engineering techniques, namely, chain-of-thought
and few-shot learning. Additionally, participants highlight
the ability of OptiChat to repair the models after the initial
troubleshooting recommendation,

It is very helpful that they can provide the literal ex-
planation on what to improve while also providing
some systematic understanding of the each problem
formulation. Also their recommendation on questions
asking one parameter change has been always accu-
rate in the first round of asking to make problem fea-
sible.—Participant 4.

Overall, participants in both groups have expressed pos-
itive feedback regarding OptiChat, emphasizing the clar-
ity of the explanations, structure and insightfulness of the
responses, and timely responses. Additionally, participants
have provided feedback that can guide future research direc-
tions, mainly referring to the language used while explaining
infeasibilities. That is, we could adjust the language used
to explain the models and infeasibilities depending on the
user’s level of expertise.

Conclusions
In this manuscript, we propose OptiChat, an LLM-powered
agent system that facilitates analyzing and troubleshoot-
ing infeasible optimization models using natural language-
based interactions with non-expert users. Our agent re-
lies on several prompting techniques to improve the ro-
bustness, including expert chain-of-thought, few-shot learn-
ing, and sentiment prompting. Additionally, to improve
OptiChat’s reliability, we propose a prompting technique
named key-retrieve, which allows extracting the keys cor-
responding to the parameter and constraint names directly
from the optimization model script. The aforementioned
prompting techniques are used in combination with GPT-
4’s function-calling capability to interact with state-of-the-
art optimization solvers. The proposed chatbot is capable of
troubleshooting linear and mixed-integer linear optimization
problems, which can model a wide variety of applications
in finance, logistics, and critical infrastructure planning and
operation.

References
Bisschop, J.; and Roelofs, M. 2004. The Modeling Language
AIMMS, 71–104.
Bussieck, M. R.; and Meeraus, A. 2004. General Algebraic
Modeling System (GAMS), 137–157.
Chinneck, J. W. 2008. Feasibility and Infeasibility in Op-
timization, volume 118. Springer US. ISBN 978-0-387-
74931-0.
Chinneck, J. W.; and Dravnieks, E. W. 1991. Locating Min-
imal Infeasible Constraint Sets in Linear Programs. ORSA
Journal on Computing, 3: 157–168.
Feldhus, N.; Ravichandran, A. M.; and Möller, S. 2022. Me-
diators: Conversational Agents Explaining NLP Model Be-
havior. In IJCAI-ECAI Workshop on Explainable Artificial
Intelligence (XAI).
Fourer, R.; Gay, D. M.; and Kernighan, B. W. 1989. AMPL:
A Mathematical Programing Language, 150–151. Springer
Berlin Heidelberg.
Gleeson, J.; and Ryan, J. 1990. Identifying minimally infea-
sible subsystems of inequalities. ORSA Journal on Comput-
ing, 2(1): 61–63.
Greenberg, H. 1983. A Functional Description of ANA-
LYZE: A Computer-Assisted Analysis System for Linear
Programming Models. ACM Transactions on Mathematical
Software, 9: 18–56.
Greenberg, H. J. 1987. Analyze: A computer-assisted anal-
ysis system for linear programming models. Operations Re-
search Letters, 6: 249–255.
Greenberg, H. J. 1993a. A Computer-Assisted Analysis Sys-
tem for Mathematical Programming Models and Solutions,
volume 1. Springer US. ISBN 978-1-4613-6428-3.
Greenberg, H. J. 1993b. How to Analyze the Results of Lin-
ear Programs—Part 3: Infeasibility Diagnosis. Interfaces,
23: 120–139.
Guieu, O.; and Chinneck, J. W. 1999. Analyzing Infeasi-
ble Mixed-Integer and Integer Linear Programs. INFORMS
Journal on Computing, 11: 63–77.
Gurobi Optimization, LLC. 2022. Gurobi Optimizer Refer-
ence Manual.
Hart, W. E.; Watson, J.-P.; and Woodruff, D. L. 2011.
Pyomo: modeling and solving mathematical programs in
Python. Mathematical Programming Computation, 3: 219–
260.
IBM. 2022. IBM ILOG CPLEX 22.1.0 User’s Manual.
Lubin, M.; Dowson, O.; Garcia, J. D.; Huchette, J.; Legat,
B.; and Vielma, J. P. 2023. JuMP 1.0: Recent improve-
ments to a modeling language for mathematical optimiza-
tion. Mathematical Programming Computation.
MOSEK ApS. 2023. MOSEK optimizer API for Python
10.1.8.
OpenAI. 2023. GPT-4 Technical Report.
Rardin, R. L. 2016. Optimization in Operations Research.
Pearson Education, 2 edition.

Slack, D.; Krishna, S.; Lakkaraju, H.; and Singh, S. 2023.
Explaining machine learning models with interactive natu-
ral language conversations using TalkToModel. Nature Ma-
chine Intelligence 2023, 1–11.
Sokol, K.; and Flach, P. 2018. Glass-box: Explaining AI
decisions with counterfactual statements through conversa-
tion with a voice-enabled virtual assistant. IJCAI Interna-
tional Joint Conference on Artificial Intelligence, 2018-July:
5868–5870.
Tamiz, M.; Mardle, S.; and Jones, D. 1996. Detecting iis
in infeasible linear programmes using techniques from goal
programming. Computers & Operations Research, 23: 113–
119.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lample,
G. 2023. LLaMA: Open and Efficient Foundation Language
Models.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in Neural Information Processing Systems,
35: 24824–24837.
Weng, L. 2023. Prompt Engineering. lilianweng.github.io.
Wexler, J.; Pushkarna, M.; Bolukbasi, T.; Wattenberg, M.;
Viegas, F.; and Wilson, J. 2020. The What-If Tool: Interac-
tive Probing of Machine Learning Models. IEEE Transac-
tions on Visualization & Computer Graphics, 26(01): 56–65.
Zhao, Z.; Wallace, E.; Feng, S.; Klein, D.; and Singh, S.
2021. Calibrate before use: Improving few-shot perfor-
mance of language models. In International Conference on
Machine Learning, 12697–12706. PMLR.

