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Abstract

Optimization models for expansion planning of power systems aim to determine capacities,

investment timing, and location of power systems to satisfy the power demands while

minimizing the total cost. The models have become complex in recent years to reflect both

regulations on conventional energy sources and the increasing penetration of renewable

energy sources (RES). This paper reviews the basic concepts and optimization models

for expansion planning of power systems. We first explain the definition and features

of generation expansion planning (GEP), transmission expansion planning (TEP), and

generation and transmission expansion planning (GTEP). To address the computational

challenges, we review several simplifications including temporal and spatial aggregation,

and decomposition methods for large-scale problems. This paper also addresses power

system reliability defined as the probability of satisfying the demand while withstanding

failures of components. The goal of this paper is to provide a research overview, discuss

trends on expansion planning of power systems, and suggest directions for future research.

Keywords: Power Systems, Optimization, Expansion Planning, Mixed-integer

Programming, Reliability

1. Introduction

In a power grid, as shown in Figure 1, electricity is generated by power plants,

transmitted through high-voltage transmission lines (approximately from 138kV to 765kV)

to reduce electricity losses during transmission, and then distributed to different customers

after lowering voltages in substations, from 120V to 69kV depending on the purpose

(Zhang and Grossmann, 2016). The main goal of power systems is to supply uninterrupted

power to customers, thereby matching power supply and demand through reliable system
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designs and flexible operations. However, due to high variations and uncertainties in power

demands, unexpected disruption of power supply by extreme weather, and inherent failure

rates of generators, transformers, and transmission lines, it is challenging to balance the

supply and demand without interruption.

Figure 1: Structure of power systems (Zhang and Grossmann, 2016)

In 2020, 4.01 billion MWh of electricity were generated in the United States. 80% of the

total electricity was generated from conventional sources such as natural gas, petroleum,

coal, and nuclear, whereas 20% was produced by renewable power generators, such as

wind turbines and solar panels (EIA, 2021). The International Renewable Energy Agency

(IRENA) reported the ‘REmap 2030’ for the US, which aims to increase the renewable

energy share in total energy generation up to 50% by 2030 (IRENA, 2015). However, unlike

the conventional technologies in which power outputs are dispatchable by operators, power

outputs of renewable generators are not controlled by operators, and are susceptible to

weather conditions of the regions where the renewable generators are installed. Therefore,

advanced methods to effectively integrate conventional and renewable technologies must

be developed for sustainable and reliable power systems.

Studies on power system optimization can be categorized into short-term operations

and long-term investment planning from a temporal perspective (see Figure 2). While

short-term problems have mainly dealt with operation and scheduling problems, such as

real-time economic dispatch or day-ahead unit commitment, long-term problems have

focused on design and planning of power systems.

Time scale

Minute Hour Day Year Decade

Real-time 

economic dispatch 

Day-ahead unit 

commitment

Long-term Investment 

planning

Figure 2: Major decision-making problems in power systems by time scale (modified from Sun (2016))

Real-time economic dispatch (ED) aims to find the optimal power output from available

power generators to meet the power demand while minimizing the operating cost (Xia
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and Elaiw, 2010; Al Farsi et al., 2015; Reddy and Bijwe, 2015). In practice, ED problems

are conducted every 5-15 minutes, depending on the electricity market structures. The

optimization model for ED problems is subject to the bounds on power output of generating

units and the power balance constraints. A number of studies on ED problems have been

reported. Some researchers have solved ED problems by using optimization techniques

such as linear programming (Conejo and Baringo, 2018), dynamic programming (Lee

et al., 1984), and nonlinear programming (Liang and Glover, 1992). Others have applied

heuristic methods such as Genetic Algorithms (Walters and Sheble, 1993) and Artificial

Neural Networks (Yalcinoz and Short, 1998). Due to both an increasing interest in

renewable energy sources, which are intermittent and non-dispatchable, and time-sensitive

load demand, researchers also have taken into account uncertainty in economic dispatch

by using different approaches: such as sub-hourly coupling models (Gangammanavar

et al., 2016), probabilistic envelopes approach (Nosair and Bouffard, 2017), and real-time

economic dispatch (Surender Reddy et al., 2015).

The goal of unit commitment (UC) is to determine the optimal scheduling of generators

(i.e., ON and OFF status) and corresponding power output to meet the power demand

while: a) satisfying technical and security constraints, and b) minimizing the cost. UC

problems are typically solved daily for the day-ahead market. The objective function is

to minimize the total cost, which can consist of operating costs, CO2 emission costs, and

security costs. Various constraints regarding start-up, shut-down, and ramping up and

down are included. Readers interested in power system operations can refer to the paper

by Conejo and Baringo (2018). Many studies on UC problems have been reported. Padhy

(2004) reviews various types of optimization models and algorithms for UC problems,

including dynamic programming, integer programming, linear programming, Lagrangean

relaxation, and artificial neural networks. Zondervan and Grossmann (2010) develop

a mixed-integer quadratically constrained programming (MIQCP) model to solve UC

problems while minimizing the total cost. Moreover, a stochastic optimization model for

demand uncertainty is developed in the following paper (Zondervan and Grossmann, 2016).

Bhardwaj et al. (2012) address evolutionary algorithms such as particle swarm optimization.

Mallipeddi and Suganthan (2014) apply deterministic and stochastic approaches to UC

problems, and provide a brief discussion and comparison on those methods. Zheng et al.

(2015) describe two-stage and multistage stochastic models and algorithms, and compare

their performances.

An expansion planning (EP) of power systems aims to determine capacities, investment

timing, and location of generation, transmission, and distribution to satisfy the projected

power demand within a set of technical and economic constraints. The model encompasses

a time horizon of more than 10 or 20 years and evaluates investment cost, operating cost,

and expected power output over the selected time horizon (Gacitua et al., 2018). A more

detailed explanation of EP problems can be found in section 2. This paper focuses on
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reviewing expansion planning models and pointing out challenges that still need to be

addressed. The contributions of this paper are as follows:

• This paper provides basic description of generation expansion planning (GEP),

transmission expansion planning (TEP), and generation and transmission planning

(GTEP).

• Both optimization models and simplification methods used to improve computational

tractability of expansion planning models, such as spatial and temporal aggregations,

are investigated.

• Reliability, resilience, and flexibility of power systems are identified as areas, which

should be further addressed in the future.

2. Review of expansion planning of power systems

Expansion planning (EP) of power systems aims to determine the optimal investment

strategy related to number, capacity, location, and investment timing of generators and

transmission lines to satisfy power demands, while following technical, economic, and

environmental constraints (Conejo et al., 2016; Hemmati et al., 2013). Initial EP research

was not able to consider operation problems together due to a lack of appropriate methods.

Therefore, it simplified investment decisions with continuous variables by applying linear

programming (LP) models (Beglari and Laughton, 1975; Garver, 1970). However, recent EP

studies have integrated investment and operation problems because of both the development

of advanced techniques and the increased need for variable generation technologies such as

wind turbines and solar panels (Gacitua et al., 2018). The structure of optimization models

has also changed from LP to mixed-integer linear programming (MILP) models so as to

take into account both continuous and discrete natures of power systems (such as power

flows or on/off status of power plants). However, the introduction of discrete variables

has significantly increased computational times, leading researchers to develop solution

methods such as simplification or decomposition. Meanwhile, advanced approach (e.g.,

game-theoretical models) has also been used to reflect characteristics of modern power

systems such as regulated or deregulated electricity markets. For instance, Akbari et al.

(2017) propose a new structure for decentralized generation and transmission expansion

planning using Stackelberg bilevel game theory with multi-leaders and multi-followers.

Chuang et al. (2001) apply non-cooperative game theory (i.e., the Cournot model of

oligopoly behavior) to formulate an expansion planning model for a competitive electricity

industry.

In general, the basic MILP model for EP problems can be represented as follows,

min Z = c⊤x+ d⊤y (1a)
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s.t. Ax+By ≤ f (1b)

Ey ≤ g (1c)

x ∈ Rm, y ∈ Zn (1d)

where x represents the continuous variables and y represents the discrete variables. For

example, power flows between regions and power output from each generator correspond

to continuous variables, whereas the numbers of installed or retired generator are discrete

variables. c and d are operating and investment cost coefficients, respectively. A, B, E are

coefficients matrices for the constraints, while f and g are vectors of the right-hand sides.

The size of coefficient matrices is dependent on the size of the problems. The objective

function is to minimize the total cost consisting of investment and operating costs, as

shown in equation (1a). It should be noted that other cost terms such as carbon emission

cost, social cost, and risk penalty also can be included in the objective function. The

constraints involving both investment and operating decisions are represented by equation

(1b), and the constraints for investment decisions are expressed by equation (1c). For

instance, energy balances, demand satisfaction, and ramping up/down constraints belong

to equation (1b), whereas installation and retirement schedule of generators belong to

equation (1c).

EP problems can be classified into generation expansion planning (GEP), transmission

expansion planning (TEP), generation and transmission expansion planning (GTEP), and

distribution expansion planning (DEP) (Koltsaklis and Dagoumas, 2018; Gonzalez-Romero

et al., 2020; Muñoz-Delgado et al., 2020). Note that since investment costs for generation

and transmission are more expensive than those for distribution, this paper does not

address DEP problems.

2.1. Generation expansion planning (GEP)

Generation expansion planning (GEP) is the basic model in a long-term planning

of electric power systems. The main goal of GEP is to determine the number, size,

location, and investment timing of power generators/power stations so as to satisfy the

projected power demand over time horizon. GEP models are generally subjected to

constraints regarding power demand satisfaction, power output limit of generators, and

reserve margin for reliability (Gacitua et al., 2018; Lara et al., 2018). Recently, researchers

have included operational problems such as ED and UC in expansion planning to capture

the hourly features of power generators. Lara et al. (2018) propose a MILP model that

includes both long-term investment decisions and hourly unit commitment decisions,

which minimize the overall costs including investment, operating, and environmental costs.

Palmintier and Webster (2016) present a MILP model that integrates capacity planning,
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unit commitment, maintenance, and critical operating constraints. Moreover, Abdin

et al. (2022) propose a novel multistage robust optimization model for multi-period and

multi-region capacity planning. Short-term operation constraints such as unit commitment

and ramping up/down, as well as uncertainty of load demand and renewable generation

are taken into account. Scott et al. (2021) develop a stochastic MILP model to account

for uncertainties of four parameters: electricity demand, fuel cost (i.e., natural gas price),

carbon tax, and technology cost. A summary of GEP studies can be found in Table 1.

2.2. Transmission expansion planning (TEP)

Transmission expansion planning (TEP) aims to install new transmission lines and/or

expands the capacity of existing transmission lines. TEP models are in general subjected

to constraints regarding power balances, power limits on transmission lines, voltage

requirement, capacity limit of transmission line, and security (Gacitua et al., 2018). As in

GEP, a typical objective function of TEP is to minimize cost while maintaining reliability

and security. Different optimization techniques have been used for TEP problems. Bahiense

et al. (2001) propose a mixed-integer disjunctive model for transmission network expansion

and suggest three different formulations (i.e., big-M formulation, hull formulation, and

alternative big-M formulation). Freitas et al. (2019) adopt a linear disjunctive model

so as to evaluate expansion scenarios with multiple generation technologies. Moreover,

Escobar et al. (2008) propose a new TEP model suitable for a competitive electricity

market, and employ a tailored genetic algorithm to solve the problem. Sousa and Asada

(2015) propose a multi-objective evolutionary algorithm to obtain promising solutions

from the alternative pool. Haghighat and Zeng (2018) present a two-stage stochastic

mixed-integer second-order conic programming (MISOCP) model for expansion planning of

nonlinear AC power flows. Moreira et al. (2015) develop a robust adjustable optimization

model to improve the tractability of the contingency-constrained TEP models. Jabr (2013)

propose a robust MILP model to capture the impact of uncertainties of renewable power

generations and power load, and employ Benders decomposition to solve the robust MILP

model. A summary of TEP studies can be found in Table 1.

2.3. Generation and transmission expansion planning (GTEP)

GEP and TEP have seldom been combined due to the difference in market agents: GEP

problems have been dealt with by generators companies (known as GENCOs), whereas

TEP problems have been controlled by transmission companies (known as TRANSCOs).

However, the significant penetration of renewables into power systems has accelerated the

development of co-optimization methods. Unlike the conventional energy sources such

as coal and natural gas, which are collectible and can be processed in centralized power

plants, it is challenging to aggregate renewable sources since they are distributed and

intermittent (Won et al., 2017). Moreover, the regions rich in renewable energy sources
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might not be connected to the power grid; for example, offshore wind farms can generate

a large amount of electricity but might not be well connected to inland areas (Koltsaklis

and Dagoumas, 2018). Therefore, in modern power systems with a high share of renewable

power technologies, GEP and TEP should be combined (Krishnan et al., 2016).

The main goal of GTEP is to determine the optimal investment decisions such as

number, size, location, and time of power generators/power stations and transmission

lines, along with operation decisions, so as to satisfy the projected power demand over the

time horizon. GTEP models are also subjected to constraints regarding power balances,

unit commitment, operating reserve, capacity limits, and capacity factors for renewable

generation technologies (Gacitua et al., 2018; Li et al., 2021a). A large number of GTEP

works have been reported. Li et al. (2021a) extend the GEP work of Lara et al. (2018)

to GTEP by considering expansion planning of transmission lines. Shu et al. (2015)

propose a MILP model for network expansion planning. In particular, two methods

(dynamic programming and simplified MILP) are applied to address the computational

complexity. Pozo et al. (2013) present a three-level expansion planning model. The

first and second levels determine the optimal investment decisions for transmission and

generation, respectively. At the last level, operation strategies are determined under the

fixed generation and transmission designs.

Stochastic programming or robust optimization are also implemented to take into

account the impact of uncertainties in GTEP. Moreira et al. (2017) present a two-stage

min-max-min model to consider high security standards and uncertainty of renewable

generation. The proposed model also determines the optimal reserve systems by employing

n - K security criteria. Aghaei et al. (2014) propose a new probabilistic expansion

planning model for GTEP problems by considering reliability criteria. Alizadeh and Jadid

(2015) propose a mixed-integer nonlinear programming (MINLP) for GTEP, as well as an

algorithm for reliability evaluation. A summary of GTEP studies can be found in Table 2.

2.4. Extension of the expansion planning framework

Expansion planning studies of power systems have focused mainly on electric power

systems. However, as modern energy systems have become more complex and uncertain

due to the high penetration of renewable sources and regulations on conventional sources,

the need of integrated energy systems research has been augmenting in recent years.

Integrated energy systems (IES), also known as energy hubs, produce multiple products

(e.g., electricity, heat, chemicals including H2 and CO2) from multiple energy sources such

as fossil fuel, uranium, wind, and solar through various technologies such as generators,

chemical plants, and storages (Maroufmashat et al., 2019; Walker et al., 2017; Geidl et al.,

2007). A number of studies on IES systems have been reported. Shao et al. (2017) propose

a robust optimization model and algorithm for integrated power systems with natural gas

so as to enhance resilience of power systems under extreme conditions. He et al. (2021)
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develop a capacity expansion planning model for a combined electricity and H2 system,

so called Decision Optimization of Low-Carbon Power-Hydorgen Network (DOLPHYN),

and evaluate sector-coupling effects of H2 in power systems. Brown et al. (2018) present

an LP optimization model for multi-region (or multi-country) and multi-period planning

of integrated energy systems including electricity, heat, hydrogen, and methane. The

coupling effects of multiple energy carriers enable the systems to have 95% reduction in

CO2 emission. Han and Kim (2019) propose an expansion planning model for complex

renewable energy supply systems with multiple products such as electricity, hydrogen,

and fuel from renewable sources. Allen et al. (2019) present a two-stage stochastic MILP

model for planning and scheduling of power systems exploiting the Energy-Water Nexus

framework.

3. Large-scale example of generation and transmission expansion planning

Expansion planning, especially multi-region and multi-period expansion planning, is

regarded as a complex problem due to its large number of decision variables and constraints.

The example from the paper by Li et al. (2021a) is used in this section to explain how

the model works and what decisions the model can provide for large-scale problems. In

the paper by Li et al. (2021a), five different types of generators are considered: natural

gas plants, coal plants, nuclear plants, wind turbines, and solar panels. Given are the

corresponding nameplate (maximum) capacity of the generators, capital costs, fixed and

variable operating costs, ramp-up/ramp-down rates for conventional generators, capacity

factors for renewable generators, phase angle, and susceptance of transmission lines. The

optimization model is formulated as an MILP to determine: a) the optimal location

and timing to install or retire generators, storage, and transmission lines, b) the optimal

scheduling of thermal generators from the unit commitment, and c) the power output

of generators and power flows through transmission lines. The objective function is to

minimize the total cost, including investment, operating, and environmental costs. The

model is applied to the ERCOT electricity market in Texas, consisting of five subregions

such as Panhandle, Northeast, West, South, and Coast, over a 20 year horizon from 2019

to 2038.

Figures 3 and 4 show generation and transmission expansion results, respectively. As

shown in Figure 3, the total capacity of natural gas plants increases and reaches a peak in

2024 (approximately 70GW). However, the capacity decreases afterward due to both the

retirement of existing generators and strengthened regulation on CO2 emissions, preventing

the systems from installing new fossil-fuel power generators. The total capacity of nuclear

and coal power plants decreases due to the same reasons, and finally accounts for 8% of

the total capacity in 2038. On the other hand, the total capacity of wind turbines and

solar panels, which accounts for 20% of the total capacity in 2019, greatly increases and
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becomes the largest contributor in 2038 by accounting for 52% of the total capacity. As

shown in Figure 4, most of the transmission lines are built from Panhandle to others so as

to transmit the power, it is because Panhandle can produce more renewable electricity

than others due to its higher wind speed and solar radiations.

The corresponding MILP model includes 2,800 binary variables, 1,024,680 integer

variables, 4,120,606 continuous variables, and 7,787,266 constraints. The example was

solved in 33,207 seconds (i.e., 9.224 hours) using a tailored Benders decomposition algorithm

in CPLEX within an optimality gap of 0.4%. This example shows that solution strategies

for handling large-scale problems must be developed, as will also be discussed in the next

section.

Figure 3: Generation expansion results (Li et al., 2021a)

2.73

2.41

8.63

0.44

6.05
10.72

Power	flow	 (GW)

Figure 4: Transmission expansion results (Li et al., 2021a)

4. Computational challenges in expansion planning

One of the main issues of multi-region and multi-period expansion planning models

is the computational intractability caused by investment and operation decisions over

multiple decades. In order to improve the computational tractability of the optimization
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models, temporal and spatial aggregation methods have been proposed in the literature,

as will be discussed in sections 4.1 and 4.2. In addition, decomposition algorithms for

large-scale problems will also be described in section 4.3.

4.1. Temporal aggregation

While operation problems such as ramping up/down and unit commitment are solved on

an hourly basis, investment decisions such as installing new generators are based on a yearly

basis. It is possible to solve hourly operation problems every hour; however, it is intractable

in expansion planning as it focuses on system design over several decades. To tackle such a

problem, previous researchers have developed temporal aggregation approaches. According

to the paper by Helistö et al. (2019), there are three temporal aggregation methods: (a)

screening curve method, (b) time slice method, and (c) representative period method.

(a) (b) (c)

Figure 5: Temporal aggregation methods: (a) Screening curve, (b) Time slice, (c) Representative period

(modified from Helistö et al. (2019))

A screening curve uses a load duration curve or a net load duration curve to simplify

the high variation in demand. This method plots power demand over a specified period in

the order of decreasing magnitude, as shown in Figure 5(a). The screening curve method

can intuitively provide minimum and maximum power demands over the period; however,

it is not used to solve operational problems such as hourly ramping up/down an unit

commitment due to the absence of chronological representation. As shown in Figure 5(b),

a time-slice method splits the whole time horizon into multiple periods based on seasonal

or day-night variations. The time slice method represents the entire data of interest (such

as annual power demand or capacity factor for renewable generation) by averaging the

data set that belongs to each time slice. Therefore, the accuracy of optimization models is

improved as the number of time slices increases (Mallapragada et al., 2018; Poncelet et al.,

2016).

A representative period method in Figure 5(c) selects a subset of days or weeks from

a fullspace data set and solves problems based on the representative periods. In the

literature, both representative days (Mallapragada et al., 2018; Teichgraeber and Brandt,

2019; Scott et al., 2019; Tso et al., 2020) and representative weeks (Bahl et al., 2018) have
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been used as representative periods. Lara et al. (2018) use the representative days method

to effectively simplify the time set, while keeping the chronology of hourly data such as

loads and capacity factors. Figure 6 shows the temporal aggregation method used in the

paper by Lara et al. (2018). Each year t ∈ T can be represented by the summation of days

d ∈ D, and each day d is composed of sub-period s ∈ S (i.e. 24 hours). While investment

decisions are made in year t, operation decisions are determined on each representative

days d. The most important decision in this method is to select representative days d from

the fullspace data set. Clustering methods such as k-means or k-medoids can be used to

find the optimal number of representative days depending on the input data (Li et al.,

2021b). Note that the accuracy of the optimization models can improve as the number of

representative days increases. By multiplying the weight factor (Wd) by the sub-period s

of representative days d, the model indirectly solves the operation problems for all given

times.

Figure 6: Representative days approach for temporal aggregation (Lara et al., 2018)

4.2. Spatial aggregation

Expansion planning is typically performed on large-scale power systems consisting of

thousands of buses. Note that a bus stands for a node connected by multiple lines in

a power grid, and contains components such as loads and generators. It is possible for

small-scale planning problems focusing on a few regions to consider all buses. However,

it is intractable to explicitly model all buses in large-scale expansion planning such as

national-level or state-level planning. Therefore, various spatial aggregation methods have

been proposed to improve computational tractability of large-scale problems.

The method to reduce spatial complexity is to aggregate some buses using clustering

analysis. According to the paper by Frysztacki et al. (2022), there are three clustering

methods for spatial reduction: K -means, Ward’s method, and Modularity maximization.

K -means is one of the common algorithms that aggregates some buses based on geographical

information such as coordinates. One drawback of K -means is that it might distort the

connectivity of regions. For example, two regions that are not physically connected can be

aggregated as one cluster if they are adjacent (Horsch and Brown, 2017). While Ward’s

method uses hierarchical clustering that combines buses based on capacity factors or
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resolved capacity factors, Modularity maximization clusters the buses based on electrical

distances between nodes. Lara et al. (2018) and Li et al. (2021a) use the Ward’s method

with capacity factor aggregation. In particular, the area of interest is divided into several

regions that have similar load profiles and climate conditions (e.g., wind speed and solar

radiation). Since each region is treated as one bus in the power flow model of those papers,

only the tielines between two neighboring regions are considered. The spatial aggregation

is close to the original full-space model if the generators using the same technology have

similar parameters and the transmission lines within each aggregated regions.

4.3. Decomposition algorithms for large-scale problems

Despite the aggregation methods explained in previous sections, the MILP models

for GEP, TEP, and GTEP can involve millions of variables that cause the model to be

computationally intractable. Computational experiments in Lara et al. (2018) and Li

et al. (2021a) have shown that the commercial solvers like CPLEX and Gurobi fail to solve

the large-scale problems involving millions of variables and constraints. To address this

computational intractability, researchers have proposed different decomposition algorithms

such as column generation (Flores-Quiroz et al., 2016), Dantzig-Wolfe decomposition

(Singh et al., 2009), nested-Benders decomposition (Lara et al., 2018), and tailored Benders

decomposition (Li et al., 2021a), as well as heuristics (Palmintier and Webster, 2016, 2014)

and advanced approach such as stochastic dual dynamic programming (Pereira and Pinto,

1991) and stochastic dual dynamic integer programming (Zou et al., 2019). Tables 1 and 2

also provide solution methods used in each paper. Since Benders decomposition has been

widely used (See Tables 1 and 2), we explain here two Benders decomposition methods,

nested Benders and tailored Benders decompositions proposed by Lara et al. (2018) and

Li et al. (2021a), respectively.

The nested Benders decomposition has two main phases: forward pass and backward

pass. A high-level description is shown in Figure 7. In the forward pass, the model is

solved sequentially year by year in a myopic fashion. At a given year t, only the variables

and constraints associated to year t are included. Benders cuts from the backward pass

are also added to provide a relaxation of the cost-to-go function at year t. The forward

pass provides a feasible solution when it reaches the end of the planning horizon, which is

an upper bound of the cost minimization problem. The backward pass solves a relaxation

of the MILP model from the end of the planning horizon to the first year sequentially.

After the LP relaxation at year t ∈ T is solved, a Benders cut can be generated to update

the cost-to-go function at year t − 1 ∈ T . The problem at year t = 1 provides a lower

bound of the problem. The nested Benders algorithm iterates between forward pass and

backward pass until the specified convergence tolerance is reached.
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Figure 7: Nested Benders decomposition algorithm (Lara et al., 2018)

The tailored Benders decomposition decomposes the fullspace model into a Benders

master problem that only involves the investment variables y, and into |T | Benders
subproblems. A high level description is given in Figure 8. At each iteration, the algorithm

first solves the Benders master problem after which the investment decisions are fixed, and

each Benders subproblem can then be solved independently. Note that there are some

integer variables in the operating decisions, such as the number of generators that are

on/off. In order to generate valid Benders cuts for the Benders master problem, integer

variables regarding operating decisions are relaxed. The algorithm iterates between the

master problem and the subproblems until the predicted lower and upper bounds lie within

a specified tolerance.

Investment	decisions	 for	the		planning	horizon	Benders	master	problem

….
Year	T	

operating	
decisions	

Year	1	
operating	
decisions	

Year	2	
operating	
decisions	Benders	subproblems

Subproblems are	decomposed	 by	year	

Add	Benders	cutsFix	investment	decisions

Figure 8: Tailored Benders decomposition algorithm (Li et al., 2021a)

5. Reliability in power systems

Reliability is the probability of a device or system to perform its function adequately

under the given operating conditions (Endrenyi, 1979). Since the main goal of power

systems is to supply customers with uninterrupted power so as to satisfy the load demand,

power system reliability indicates the probability that power demand is satisfied even if

some units fail (Billinton and Allan, 1990). However, meeting the time-varying demand is

not always possible due to the stochastic nature affecting power systems, such as random
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failures of equipment, and supply disruption by extreme weather conditions. Moreover,

it is challenging to exactly predict power output generated from variable generation

technologies, such as wind turbines and solar panels, due to the intermittency of renewable

sources.

In power generation systems, reliability can be evaluated based on security and adequacy

(Billinton and Allan, 1990). Security indicates the ability of power systems to operate

stably under unplanned outages, which is associated with how the systems respond to

the perturbations during operation. On the other hand, adequacy focuses on securing

sufficient generation, transmission, and distribution facilities to satisfy the load demand

and operational constraints under normal operation conditions. High-level studies such as

design and expansion planning have mainly analyzed system adequacy to evaluate power

system reliability. As shown in Figure 9, the system adequacy can be evaluated using

deterministic and probabilistic approaches.

Deterministic 

approach

Probabilistic 

approach

Generation 

system 

reliability

Security

Adequacy

Reserve margin

Loss of largest unit

(i.e., N-1 reliability)

Monte Carlo 

simulation

Analytic method

Figure 9: Reliability assessment for power generation systems (modified from Ballireddy and Modi (2019))

There are two different methods in the deterministic approach for adequacy: reserve

margin and loss of the largest unit. The reserve margin method installs a larger capacity

than required to prevent power shortages caused by the contingency (also known as

overdesign of the systems). Note that in power systems, contingency is the same term

as a disturbance resulting from the component outages (Abul’Wafa et al., 2019). This

reserve margin capacity is usually equivalent to a fixed percentage of the peak demand

and operating margins. The loss of the largest unit method, also known as N-1 reliability,

means that the power systems can withstand an unexpected failure or outage of the single

and largest component (Ovaere, 2016). Although there are N-2, N-3,..., N-k reliability

methods stating the power systems can stably operate under multiple unit failures, N-1

reliability method has been commonly used in expansion planning due to its simplicity. A

shortcoming of these methods is that they do not account for the stochastic nature such as

failures of the generators. Securing sufficient capacity does not guarantee that the systems

will not fail because each power generating unit has an inherent failure rate.
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A probabilistic approach is more rigorous and accurate than the deterministic approach

in the way that multiple failure scenarios are explicitly included to predict the system

reliability. As shown in Figure 9, there are two methods in the probabilistic approach:

Monte Carlo simulation and an analytic method (Singh and Mitra, 1995; Singh et al.,

2019). Monte Carlo simulation generates different failure scenarios and evaluates the

system reliability based on the probability distribution function of components composing

each failure scenario (Singh and Mitra, 1995). The analytical method evaluates the system

reliability by using mathematical models, which include the state space method using

Markov processes, network reduction method, conditional probability method, and cut-set

or tie-set method (Singh et al., 2019; Prada, 1999). Although the analytical method is

rigorous and useful in reliability evaluation, it is challenging to integrate this method into

expansion planning due to the complexity of the resulting optimization models.

5.1. Reliability indices in a probabilistic approach

There are three reliability indices used in the probabilistic approach for expansion

planning of power generation systems: loss of load probability (LOLP), loss of load

expectation (LOLE), and loss of energy expectation (LOEE) (Gbadamosi and Nwulu,

2020). LOLP is the probability that the power system fails to satisfy the power demand

due to outages of available generating capacities. LOLE indicates the expected number of

hours or days where the power demands are not satisfied (Husain Saleh et al., 2019). As

the name implies, LOLP should be defined as a probability, but it is measured in numbers

of hours or days for convenience, which states LOLP and LOLE have been interchangeably

used in power systems. Both indices have commonly been used to determine the installed

capacity of power systems based on peak load demand. However, a shortcoming of LOLE

and LOLP is that they do not provide information regarding the duration and frequency

of failures and incidence of power loss. On the other hand, LOEE stands for the power

demand not supplied due to inadequate capacity of power generation systems (Hakimi

et al., 2022). It is also known as expected energy not served (EENS). LOEE or EENS is

also frequently used in expansion planning; in general, LOLE and LOEE have been used

together so as to provide information about duration and amounts of power loss.

Three important steps should be conducted to use these indices for reliability assessment.

The first is to enumerate all capacity failure states composed of combinations of operating

and failed generators. For instance, there is a power generation system consisting of

two 50MW generators, each with failure rate of 0.1. This illustrative example can have

four capacity failure states as shown in Table 3. It should be noted that the number of

capacity failure states increases exponentially as the number of generators increases. The

power system with three 50MW generators has eight failure states. All failure states can

explicitly enumerate using Markov properties, and readers interested in Markov process

for reliability assessment can refer to the paper by Rausand and Hoyland (2003).
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Table 3: Capacity failure states of the illustrative example

Failure states Generator status Availability capacity State probability
(k) Gen #1 Gen #2 (MW) (pk)

1 Active Active 100 0.81
2 Failed Active 50 0.09
3 Active Failed 50 0.09
4 Failed Failed 0 0.01

The second is to predict the probability of each capacity failure state k based on failure

rates of generators, which are known as forced outage rates (FOR). The state probability

(pk) can be calculated as follows:

pk =
∏
j∈JF

k

(1− λj)
∏
j∈JO

k

λj (2)

where λj is the forced outage rate (or simply failure rate) of units j, such as generators or

transmission lines, it is assumed as 0.1 in the above example. JF
k and JO

k are the sets of

failed and active units under capacity outage state k, respectively. As depicted in Table 3,

the probability of the failure state 1 becomes 0.81, whereas the probability of the failure

state 4 becomes 0.01. Finally, outage time (tk) and corresponding unmet demand (Ek)

under the specific capacity failure state (k) are projected based on the state probability

(pk) and the load profile. For the illustrative example composing of two 50MW generators,

the load profile is assumed to be given as depicted in Figure 10(a).

Time (100 days)

Peak demand (MW)

Installed capacity (MW)

El
e

ct
ri

ci
ty

 (
M

W
)

Reserve (MW)

80

100

20
Lowest demand (MW)

Outage time (tk) 
= 50 days = 1,200 hrs

Area = Not served energy (Ek)
= 18,000MWh

100

Time (100 days)

El
e

ct
ri

ci
ty

 (
M

W
)

50

Installed capacity (MW)

Available capacity 

80

20

(a) (b)

Figure 10: (a) load curve and installed capacity, (b) outage time and power energy not served of the

illustrative example

As shown in 10(a), the load demand gradually decreases from 80MW to 20MW for

100 days, with its peak demand at 80MW. The system is designed to have a 25% larger

capacity than the peak demand, resulting in a total installed capacity of 100MW. The

difference between the installed capacity and the peak demand is known as reserve. If one
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of the generator fails, the power system only has available capacity of 50MW as shown

in 10(b). Such power system is not able to fully satisfy the load demand for the first

50 days (i.e., 1200 hours), and the unmet demand is calculated as 18,000 MWh for the

given period. 50 days and 18,000 MWh stand for outage time (tk) and unmet demand

(Ek) at the failure state k, respectively. Since this power system has four different failure

states, four different outage times and unmet demands are calculated. LOLE and LOEE

of the power systems are calculated by aggregating the products of outage time and state

probability, and unmet demand and state probability for all states, as shown in equations

(3) and (4). As a result, the illustrative example expects to have 240 hours of LOLE and

3600 MWh of LOEE (see Table 4). In practice, power systems aim to design and operate

to have lower LOLE and LOEE.

LOLE =

nk∑
k=1

pktk (unit : hours) (3)

LOEE =

nk∑
k=1

pkEk (unit : MWh) (4)

For instance, the goal of PJM electricity systems that coordinates the movement of

electricity of 13 eastern states in the US is to maintain their LOLE level at 0.1 days/year

(Garrido, 2020). As mentioned earlier, the main challenge of the probabilistic approach

is that the number of capacity failure states grows exponentially with the number of

generators installed. Therefore, solution strategies to handle the large number of failure

states should be developed.

Table 4: LOLE and LOEE results of the illustrative example

Failure states Out capacity State probability Outage time Unmet demand
(k) (MW) (pk) (hours, tk) (MWh, Ek)

1 0 0.81 0 0
2 50 0.09 1,200 18,000
3 50 0.09 1,200 18,000
4 100 0.01 2,400 36,000
LOLE (hours) 240
LOEE (MWh) 3600

5.2. Reviews of probabilistic model for reliable expansion planning

Several expansion planning works using a probabilistic method to evaluate power

system reliability have been reported. Slipac et al. (2019) and Choi et al. (2005) propose

a new optimization model for expansion planning of power systems based on probabilistic

reliability indices. Aghaei et al. (2013) present a multi-objective generation expansion

planning model that minimizes the cost and environmental impact, and maximizes reliabil-

ity. The model is subject to a reliability constraint expressed by LOLP criterion. Aghaei
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et al. (2014) incorporate EENS criterion into GTEP optimization models to account for

the reliability of power systems. The non-linearity of the model caused by reliability

constraints is eliminated by reformulating the model. The authors also compare the results

of typical GTEP and reliability-constrained GTEP, and evaluate the effect of non-linearity

of the models on finding feasible solutions in a reasonable time. Jooshaki et al. (2019)

propose a reliability-constrained MILP model for the distribution expansion planning.

Power loss is penalized as a reliability-related cost in the model, and three reliability

indices (EENS, SAIFI, and SAIDI) are applied. Note that system average interruption

frequency index (SAIFI) and system average interruption duration index (SAIDI) are used

to measure the reliability of distribution system. Gbadamosi and Nwulu (2020) propose a

multi-objective optimization model for the expansion planning, which minimize the cost,

power outage costs, power losses, and CO2 emission. Markov processes and three indices

(i.e., LOLP, LOLE, and EENS) are applied in the model to evaluate the power system

reliability. Cho and Grossmann (2022) propose an optimization model for expansion

planning of reliable power generation systems. The model determines both investment

decisions (such as number, size, location, and investment timing) and operation decisions

(number of operating/backup generators, operating capacity, and expected power output)

while minimizing total costs consisting of investment and operation costs, and LOLE

and LOEE penalties. Interesting points of this paper are that: a) backup generators are

considered to improve power systems reliability, and b) all possible capacity failure states

are explicitly considered in the model. Moreover, the backup generators have dual roles in

the paper. They remain as backups in case of low power demand, or change to operating

generators when the power demand is large.

6. Future directions

Previous studies have not only developed optimization models for expansion planning of

power systems but also extended the scope of the models by taking into account reliability

and flexibility constraints. However, there are several challenges that researchers should

address for expansion planning research.

6.1. Power systems resilience

Resilience is the ability of a system to quickly recover its normal conditions after the

occurrences of disruptions that are typically due to extreme weather conditions (Hosseini

et al., 2016). Reliability has been widely analyzed in expansion planning, whereas resilience

is an emerging concept in power systems. Note that resilience of chemical process such as

heat exchanger network had been actively studied (Lenhoff and Morari, 1982; Marselle

et al., 1982; Morari, 1983; Saboo et al., 1987a,b). In power systems, reliability is concerned

with high probability and low impact (HPLI) events, such as single unit failure, whereas
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resilience is related to low probability and high impact (LPHI) events such as natural

disasters and extreme weather conditions. Power system reliability mainly aims to ensure

stable design and operation of power systems by: a) installing sufficient capacities and/or

b) preventing events that can frequently occur through reliable operation strategies. Power

systems with high reliability can consistently satisfy the load demand. On the other hand,

power system resilience analyzes the recovery process after a power outage. The resilience

research not only takes preventive measures to reduce the probability of power outage but

it also suggests ways to restore the damaged power systems. Power systems with high

resilience can withstand unexpected disruption and quickly recover from the damaged

operating conditions (Bhusal et al., 2020). Further explanation of power system resilience

can be found in the paper (Gacitua et al., 2018).

Previously, resilience was not considered in expansion planning because the probability

of extreme weather events was assumed to be significantly low, and because of the com-

putational intractability of combining dynamic features and long-term capacity planning.

However, recently, researchers have integrated resilience and expansion planning as the

power outages caused by extreme weather events have increased worldwide, such as the

2021 Texas power crisis (Aldhous et al., 2021). It should be noted that unlike the reliability

research which relies on the probability of equipment failure, power system resilience is

significantly affected by highly uncertain and unpredictable information such as frequency

or magnitude of extreme weather (Gacitua et al., 2018). Therefore, advanced methods

and approach that can account for such uncertainty should be developed. Although some

studies on resiliency-constrained expansion planning have been reported (Zakernezhad

et al., 2021; Hamidpour et al., 2021; Anderson et al., 2021; Qorbani and Amraee, 2021),

follow-up studies should propose advanced expansion planning models that combine re-

liability and resilience to rigorously account for all possible failures of components and

disruption.

6.2. Integration of reliability, resilience, and flexibility

In chemical engineering, flexibility is the capability of a chemical process to achieve

feasible operation over a given range of uncertain conditions (Grossmann and Floudas,

1987). However, power system flexibility has a different meaning. Power system flexibility

is the ability to balance supply and demand without disruption, even under uncertain

operation conditions (EPRI, 2016). However, it is challenging to satisfy the demand of

modern power systems consisting of many variable generators due to intermittency of

renewable sources. In order to improve flexibility of power systems, alternatives such as

large-scale electricity storage, sector-coupling with hydrogen or heat, and demand response

have been proposed. As discussed in section 2, expansion planning models accounting for

either reliability or flexible operation under uncertainty have been areas of active research

(See Tables 1 and 2). However, because of the complexity of the optimization models, there
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are not many studies that have simultaneously taken into account reliability, resilience,

and flexibility in expansion planning. Future expansion planning studies should integrate

these three topics together through development of advanced optimization models.

7. Conclusions

Expansion planning, one of the areas in power system research, aims to determine

adequate capacities for generation, transmission, and distribution to satisfy the projected

power demand within a set of technical and economic constraints. The objective function

of optimization models is to minimize the cost, including investment and operating costs.

Constraints related to power balance, capacity limits, and security are usually applied.

The optimization model usually considers a time horizon of more than 20 years, and

determines investment decisions such as the number, type, capacity, investment timing,

and locations of the units. However, the models have become more complex in recent

years so as to reflect both regulations on conventional energy sources and the increasing

penetration of renewable energy sources.

This paper has reviewed the basic concepts and optimization models of expansion

planning. We also have investigated computational challenges of expansion planning

models, such as temporal and spatial aggregation, and decomposition methods for large-

scale problems. In addition, this paper has reviewed the definition of power system

reliability and the methods frequently used to evaluate power system reliability, such

as reserve margin, N-1 reliability, Monte Carlo simulation, and an analytic method.

Finally, this paper has briefly discussed future directions including integration of reliability,

resilience, and flexibility.
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The energy hub-a powerful concept for future energy systems. Third Annual Carnegie

Mellon Conference on the Electricity Industry , 13–14.
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coupling via hydrogen to lower the cost of energy system decarbonization. Energy

Environ. Sci. 14, 4635–4646. doi:10.1039/D1EE00627D.
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