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Abstract

With the increasing penetration of renewable generating units, especially in

remote areas not well connected with load demand, there are growing inter-

ests to co-optimize generation and transmission expansion planning (GTEP) in

power systems. Due to the volatility in renewable generation, a planner needs

to include the operating decisions into the planning model to guarantee fea-

sibility. However, solving the GTEP problem with hourly operating decisions

throughout the planning horizon is computationally intractable. Therefore, we

propose several spatial and temporal simplifications to the problem. Built on

the generation expansion planning (GEP) formulation of Lara et al. (2018), we

propose a mixed-integer linear programming formulation for the GTEP prob-

lem. Three different formulations, i.e., a big-M formulation, a hull formulation,

and an alternative big-M formulation, are reported for transmission expansion.

We theoretically compare the tightness of the LP relaxations of the three for-
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mulations. The proposed MILP GTEP model typically involves millions or

tens of millions of variables, which makes the model not directly solvable by

the commercial solvers. To address this computational challenge, we propose a

nested Benders decomposition algorithm and a tailored Benders decomposition

algorithm that exploit the structure of the GTEP problem. Using a case study

from Electric Reliability Council of Texas (ERCOT), we are able to show that

the proposed tailored Benders decomposition outperforms the nested Benders

decomposition. The coordination in the optimal generation and transmission

expansion decisions from the ERCOT study implies that there is an additional

value in solving GEP and TEP simultaneously.

Keywords: OR in energy, Power Systems, Generation Transmission

Expansion, Mixed-integer Programming, Decomposition Algorithm

1. Introduction

Generation expansion planning (GEP) of power systems involves determin-

ing the optimal size, location, and construction time of new power genera-

tion plants, while minimizing the total cost over a long-term planning hori-

zon (Conejo et al., 2016; Koltsaklis and Dagoumas, 2018). There is a growing

interest to use mathematical programming models to solve generation expan-

sion planning problems (Lara et al., 2018; Sadeghi et al., 2017; Oree et al.,

2017). Conventional power units are dispatchable thermal power plants that

can provide stable power output. Due to computational tractability concerns,

generation expansion models can ignore short-term operating decisions. How-

ever, with the increased penetration of renewable generation technologies, such

as solar and wind, power systems nowadays need to be more flexible so as to

adjust to the volatile power generation from renewables. In this case, opera-

tions decisions, such as unit commitment, ramping decisions, become important

to assess system feasibility (Ding and Somani, 2010; Koltsaklis and Georgiadis,

2015; Pina et al., 2013; Poncelet et al., 2014; Shortt and O’Malley, 2010; Flores-

Quiroz et al., 2016; Palmintier and Webster, 2011; Lara et al., 2018; Lohmann
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and Rebennack, 2017). Due to the incorporation of short-term operating con-

straints into the long-term planning problem, the integrated model is compu-

tationally challenging. In order to solve such multi-scale problem efficiently,

Lara et al. (2018) use nested Benders decomposition to solve a GEP model with

unit commitment. Lohmann and Rebennack (Lohmann and Rebennack, 2017)

develop a tailored Generalized Benders Decomposition algorithm.

Transmission expansion planning (TEP) refers to installing new transmission

lines or expanding the capacities of existing transmission lines in a power system.

Bahiense et al. (2001) propose a mixed integer disjunctive model for transmis-

sion network expansion. (Alguacil et al., 2003) propose an MILP model that

considers losses and guarantees convergence to optimality for the TEP. Zhang

et al. (2013) propose an improved model that includes a linear representation

of reactive power, off-nominal bus voltage magnitudes and network losses. For

a more detailed review of of TEP models and algorithms, we refer the readers

to the review papers (Hemmati et al., 2013; Ude et al., 2019).

GEP and TEP are generally solved as two independent optimization prob-

lems since the market agents addressing these two problems are different. GEP

pertains to producers, while TEP pertains to a regulated planner. However,

the significant penetration of renewables into power systems may lead to their

concentration in remote areas not well connected to load demand (Koltsaklis

and Dagoumas, 2018). Therefore, installing renewables in those remote ar-

eas could compromise transmission expansion. The recognition of transmis-

sion’s interaction with generation expansion has motivated the development

of co-optimization methods to consider the tradeoffs between generation and

transmission expansion (Krishnan et al., 2016). Several works have been re-

ported to simultaneously optimize generation and transmission expansion plan-

ning (GTEP) (Pozo et al., 2012; Aghaei et al., 2014). We refer to Table 1 of the

review paper (Koltsaklis and Dagoumas, 2018) for a long list of works. See also

the review paper (Gacitua et al., 2018).

A number of related works consider uncertainties in the planning problem

using two-stage or multistage stochastic programming (Lara et al., 2019; O’Neill
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et al., 2013; Liu et al., 2017), robust optimization (Mej́ıa-Giraldo and McCalley,

2013; Baringo and Baringo, 2017). (Le Cadre et al., 2015; Pozo et al., 2012)

apply game theory or multi-level optimization to characterize the interaction of

the participants in the markets.

This paper is an extension of the GEP model reported in Lara et al. (2018)

to a GTEP model. in Lara et al. (2018), the authors propose an MILP model for

deterministic generation expansion planning problem that represents the hourly

operating decisions of the generators and storage units. Renewable generation

and load data on some representative days are used as the input to the hourly

unit commitment model (Mallapragada et al., 2018). Lara et al. (2018) use a

tailored nested Benders decomposition algorithm to solve the multi-scale GEP

problem. However, in Lara et al. (2018) transmission expansion planning is not

considered and the power flow equations ignore Kirchhoff’s voltage law.

The major contributions of this paper are listed below.

• We extend the model in Lara et al. (2018) by considering transmission

expansion and DC power flow equations.

• Three different formulations for transmission expansion, i.e., big-M formu-

lation, hull formulation, and an alternative big-M formulation proposed

by Bahiense et al. (2001) are investigated.

• The proposed GTEP model is computationally more challenging to solve

than the GEP model in Lara et al. (2018). Regarding solution technique,

the novel contribution of this paper is a tailored Benders decomposition

algorithm to solve the GTEP problem. We compare the nested Benders

algorithm (Lara et al., 2018) and the tailored Benders decomposition al-

gorithm for the new GTEP model.

• The case study demonstrates the importance of the coordination between

the generation and the transmission decisions in the optimal solution.

The rest of this paper is organized as follows. In section 2, we give the description

and the assumptions of the problem that we address. In section 3, we describe
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the MILP formulation for our GTEP model. In section 4, we describe two

solution techniques, a nested Benders decomposition and a tailored Benders

decomposition. In section 5, a case study from Electric Reliability Council of

Texas (ERCOT) is used to illustrate the working of the model and the efficiency

of the solution techniques. We draw the conclusion in section 6

2. Problem Statement and Assumptions

Given is a geographical region with existing and potential generating units

and transmissions lines. The problem consists in making capacity expansion

decisions for both generation and transmission while considering the unit com-

mitment and power flow constraints at the operational level.

2.1. Generation representation

The existing and potential generation technologies are similar to the ones

used in Lara et al. (2018), i.e.,

• For the existing generators we consider: (a) coal: steam turbine (coal-st-

old); (b) natural gas: boiler plants with steam turbine (ng-st-old), com-

bustion turbine (ng-ct-old), and combined-cycle (ng-cc-old); (c) nuclear:

steam turbine (nuc-st-old); (d) solar: photo-voltaic (pv-old); (e) wind:

wind turbine (wind-old).

• For the potential generators we consider: (a) coal: without (coal-new) and

with carbon capture (coal-ccs-new); (b) natural gas: combustion turbine

(ng-ct-new), combined-cycle without (ng-cc-new) and with carbon capture

(ng-cc-ccs-new); (c) nuclear: steam turbine (nuc-st-new); (d) solar: photo-

voltaic (pv- new) and concentrated solar power (csp-new); (e) wind: wind

turbine (wind-new).

Also known are: the generating units’ nameplate (maximum) capacity; expected

lifetime; fixed and variable operating costs; fixed and variable start-up cost; cost

for extending their lifetimes; CO2 emission factor and carbon tax, if applicable;
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fuel price, if applicable; and operating characteristics such as ramp-up/ramp-

down rates, operating limits, contribution to spinning and quick start fraction

for thermal generators, and capacity factor for renewable generators.

For the case of existing generators, their age at the beginning of the study

horizon and location are also known. For the case of potential generators, the

capital cost and the maximum yearly installation of each generation technol-

ogy are also given. Also given is a set of potential storage units, with specified

technology (e.g., lithium ion, lead-acid, and flow batteries), capital cost, power

rating, rated energy capacity, charge and discharge efficiency, and storage life-

time. Additionally, the projected load demand is given for each location.

We assume that the generators using the same type of technology are ho-

mogeneous, i.e., their design parameters are identical. For example, all the

coal-st-old generators have the same parameters, which can be obtained by per-

forming aggregation on the existing generators that use coal steam turbines.

Note that although the renewable generators of the same technology have the

same design parameters under our assumption, they can have different capacity

factors depending on the weather conditions of the region in which they are

installed.

2.2. Transmission representation

Given are existing and candidate transmission lines between any of the two

neighboring buses. The susceptance, distance, and capacity of each transmission

line are known. For the existing transmission lines, we assume that they will not

reach their life expectancy during the planning horizon, i.e., we do not consider

the retirement of transmission lines. For the candidate transmission lines, the

capital cost of each transmission line is known.

We use DC power flow equations to calculate the power flow in each trans-

mission line. These equations are built based on Kirchhoff’s voltage and current

laws which differ from the network flow model used in the work of Lara et al.

(2018). In the network flow model, the transmission network is represented

similarly to pipelines where the flows only observe energy balance at each node
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while ignoring Kirchhoff’s laws.

2.3. Temporal representation

The GTEP model integrates unit commitment decisions to evaluate the

hourly operation requirements. Given that the planning horizon of the GTEP

problem can be as long as 10 to 30 years, solving the long-term planning problem

with operating decisions in every hour of the planning horizon is intractable.

Therefore, a simplification is needed to make the problem solvable, while repre-

senting the hourly fluctuations of the load and renewable profiles.

Several works propose to select a few representative days (Mallapragada

et al., 2018; Teichgraeber and Brandt, 2019; Scott et al., 2019) from the full

data set to represent the hourly fluctuations. To keep the chronology of the

hourly historical data, the time series for the loads and the capacity factors

corresponding to the same day are concatenated as a single vector, which will

be used as the input to some clustering algorithms, such as k-means, and hier-

archical clustering. After performing the clustering on the full time series data

set, the time series corresponding to the representative days are the centroids

or medoids of the clusters. The details can be found in subsection 5.1.

2.4. Spatial representation

GTEP is typically performed on large scale power systems which consists of

thousands of buses, such as ERCOT, SPP, PJM, MISO, etc. In most cases, it is

intractable for GTEP to model each bus. Therefore, we adopt a similar approach

as in Lara et al. (2018) to reduce the spatial complexity of the problem. The

area of interest is divided into several regions that have similar climate (e.g.,

wind speed and solar incidence over time), and load profiles. As we describe

in the generation representation subsection, all the generators using the same

technology have the same parameters. On the other hand, for the renewable

generators, the capacity factors are dependent on the location at which they are

installed. We assume that the capacity factors of the renewable generators in

the same region are the same.
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We assume that all the generators and loads are located at the center of

each region. Since each region is treated as one bus in the power flow model,

we only consider the tielines between two neighboring regions. We assume that

the two ends of each tieline are the centers of the two regions it connects. All

the tielines are assumed to have the same voltage, susceptance, and capacity.

An example of the proposed spatial representation approach is shown in Figure

1. The ERCOT region is divided into five regions, Panhandle, Northeast, West,

South, and Coast. The center of each region is specified as one of the cities in

the region. The existing transmission lines are represented as solid lines while

the candidate transmission lines are represented as dashed lines. Each region

has generator clusters corresponding to different technologies.

The aggregation of the generating units is a simplification of the problem

that may yield suboptimal solution compared with modeling each generator

individually. Such simplification is necessary to make the problem tractable.

In order to obtain a feasible solution to the real physical system, i.e., the unit

commitment decisions of each generator, one could perform a disaggregation

heuristics on the aggregated solution. We will leave developing these heuristics

as future work.

l 2 Lnew

l 2 Lold

Candidate lines:
Existing lines:

r 2 RRegions:
Generator clusters: i 2 Ir

Figure 1: Spatial representation of the five ERCOT regions’ generator clusters and transmis-
sion lines
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2.5. Decisions and objective

With the above input data, spatial and temporal representations, the pro-

posed GTEP model is to decide: a) when and where to install new generators,

storage units and transmission lines; b) when to retire generators and storage

units; c) whether or not to extend the life of the generators that reached their

expected lifetime; d) unit commitment of the thermal generators during the

representative days; e) power generations of the generator clusters and power

flows through the transmission lines. The objective is to minimize the overall

cost including operating, investment, and environmental costs (e.g., carbon tax

and renewable generation quota).

3. MILP Formulation

This section presents a deterministic MILP formulation for the GTEP prob-

lem. Most of the MILP formulation is similar to that in Lara et al. (2018). Here,

we emphasize the transmission expansion formulation that is added. Note that

if an index appears in a summation or next to a ∀ symbol without a set, all

elements in the corresponding set should be considered. The nomenclature for

sets, parameters, and variables used in the MILP formulation are provided in

Appendix A in supplementary material.

3.1. Transmission expansion constraints

Transmission line balance constraints. A succinct version of Appendix A

is attached at the end of this paper. Variable ntbl,t denotes whether or not

candidate transmission line l is built in year t. Variable ntel,t denotes whether

transmission line l has been installed in year t. Equation (1) represents the

balance of transmission lines.

ntel,t = ntel,t−1 + ntbl,t ∀l ∈ Lnew, t (1)

The DC transmission constraints calculate and limit the power flows through

the transmission lines. Parameter Bl represents the susceptance of line l.
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θs(l),t,d,s, θr(l),t,d,s are the phase angles of the buses that are the sending-end

and the receiving-end of line l, respectively, in year t, representative day d, and

sub-period (hour) s. The existing transmission lines have to satisfy the DC

power flow equation (2).

pflow
l,t,d,s = Bl

(
θs(l),t,d,s − θr(l),t,d,s

)
∀l ∈ Lold, t, d, s (2)

It should be noted that the DC power flow equation is an approximation of the

AC power flow equation. The approximation is accurate under some assump-

tions (Frank and Rebennack, 2016): all system branch resistances are approxi-

mately zero; the differences between adjacent bus voltage angles are small; the

system bus voltages are approximately equal to the 1.0 per unit; reactive power

flow is neglected.

The power flow through each transmission line is bounded. Parameter Fmax
l

represents the capacity of transmission line l. Thus:

−Fmax
l ≤ pflow

l,t,d,s ≤ Fmax
l ∀l ∈ Lold, t, d, s (3)

For the candidate transmission lines, we can write the following disjunction,

where NTEl,t is a logic variable whose value can be True or False indicating

whether or not transmission line l is installed in year t. If line l already exists in

year t, the corresponding power flow has to satisfy DC power flow equation and

upper and lower bounds. Otherwise, the corresponding power flow is zero. We

assume that all the candidate transmission lines are standard. In other words,

the susceptance of the candidate transmission lines Bl are parameters in the

model.
NTEl,t

pflow
l,t,d,s = Bl(θs(l),t,d,s − θr(l),t,d,s)

−Fmax
l ≤ pflow

l,t,d,s ≤ Fmax
l

 ∨
 ¬NTEl,t

pflow
l,t,d,s = 0

 ∀l ∈ Lnew, t, d, s (4)

Standard approaches, i.e., big-M reformulation and hull reformulation (Gross-
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mann and Trespalacios, 2013), are available to reformulate disjunctions (4) into

mixed integer constraints.

The big-M formulation of the disjunction is,

−Ml(1−ntel,t) ≤ pflow
l,t,d,s−Bl(θs(l),t,d,s−θr(l),t,d,s) ≤Ml(1−ntel,t) ∀l ∈ Lnew, t, d, s

(5)

−Fmax
l ntel,t ≤ pflow

l,t,d,s ≤ Fmax
l ntel,t ∀l ∈ Lnew, t, d, s (6)

This big-M formulation is most commonly used in the literature (Conejo et al.,

2016) for TEP.

The hull formulation is,

pflow
l,t,d,s = Bl∆θ

1
l,t,d,s ∀l ∈ Lnew, t, d, s (7)

θs(l),t,d,s − θr(l),t,d,s = ∆θ1
l,t,d,s + ∆θ2

l,t,d,s ∀l ∈ Lnew, t, d, s (8)

−π · ntel,t ≤ ∆θ1
l,t,d,s ≤ π · ntel,t ∀l ∈ Lnew, t, d, s (9)

−π(1− ntel,t) ≤ ∆θ2
l,t,d,s ≤ π(1− ntel,t) ∀l ∈ Lnew, t, d, s (10)

where ∆θ1
l,t,d,s and ∆θ2

l,t,d,s are disaggregated variables for the angle difference

of transmission line l. Variable ∆θ1
l,t,d,s is equal to the angle difference if trans-

mission line l has been installed in year t. Otherwise, ∆θ2
l,t,d,s equals to the

angle difference. In addition to equations (7)-(10), equation (6) needs to be

included in the hull formulation.

The hull formulation has more continuous variables than the big-M formu-

lation but it avoids using the big-M parameters of equations (5). The hull

formulation provides the intersection of the convex hull of each disjunction in

(4). Therefore, the hull formulation can provide a tighter LP relaxation at the
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expense of solving larger LPs at each node of a branch-and-bound algorithm.

Alternative big-M formulation: Besides the big-M and hull formulations, an

alternative big-M formulation is proposed by Bahiense et al. (2001). In this

formulation, additional continuous variables pflow+
l,t,d,s, p

flow−
l,t,d,s, ∆θ+

l,t,d,s, ∆θ−l,t,d,s,

are introduced, where the superscript ‘+’ means that the flow is in the same

direction as the nominal direction of transmission line l, i.e., from the sending-

end node s(l) to the receiving-end node r(l); superscript ‘-’ means the opposite

direction. By defining these new continuous variables, equation (5) is replaced

by equations (11) to (14) and equation (6) is replaced by equations (17) and

(18). Bahiense et al. (2001) claim that the alternative big-M formulation is

tighter than the big-M formulation. However, we prove that they have the

same feasible region if we project the feasible region of the alternative big-M

formulation onto the space of (pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t) in Theorem 1.

The proof of Theorem 1 can be found in Appendix B of supplementary material

pflow+
l,t,d,s −Bl∆θ

+
l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (11)

pflow−
l,t,d,s −Bl∆θ

−
l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (12)

pflow+
l,t,d,s −Bl∆θ

+
l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (13)

pflow−
l,t,d,s −Bl∆θ

−
l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (14)

pflow
l,t,d,s = pflow+

l,t,d,s − pflow−
l,t,d,s ∀l ∈ Lnew, t, d, s (15)

θs(l),t,d,s − θr(l),t,d,s = ∆θ+
l,t,d,s −∆θ−l,t,d,s ∀l ∈ Lnew, t, d, s (16)

pflow+
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (17)

12



pflow−
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (18)

pflow+
l,t,d,s, p

flow−
l,t,d,s,∆θ

+
l,t,d,s,∆θ

−
l,t,d,s ≥ 0 ∀l ∈ Lnew, t, d, s (19)

Theorem 1. The alternative big-M formulation (ABM) has the same feasible

region as the big-M (BM) formulation if the feasible region of ABM is projected

to the space of
{

⊕
l∈Lnew,t∈T ,d∈D,s∈S

(pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t)

}
, where the

symbol ‘⊕’ means the concatenation of all the variables (pflow
l,t,d,s, θs(l),t,d,s, θr(l),t,d,s, ntel,t)

over the set Lnew, T ,D,S.

3.2. Other constraints

All other constraints including operational constraints, investment-related

constraints, generator balance constraints, storage constraints, are similar to

those of the MILP formulation proposed by Lara et al. (2018). The details of

these constraints and the nomenclature can be found in Appendix A in supple-

mentary material. A succinct version of Appendix A is attached at the end of

this paper.

4. Solution techniques

Given the large size of the proposed GTEP problem, tailored solution ap-

proaches need to be developed. In this section, we describe two solution algo-

rithms: a) nested Benders decomposition adapted from (Birge, 1985; Zou et al.,

2019), which has been used by Lara et al. (2018) to solve the GEP model.

b) a tailored Benders decomposition. Both of the two algorithms exploit the

structure of the GTEP problem.

4.1. Nested Benders decomposition

Lara et al. (2018) apply a nested Benders decomposition algorithm to solve

their GEP model. Like in the GEP model, the nested Benders decomposi-

tion algorithm decomposes the fullspace of the GTEP problem by year. Note
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that the linking constraints for two consecutive years are the investment related

constraints. For the investment decisions in transmission lines, the linking con-

straints are described by equation (1), i.e., the balance of candidate transmission

lines. Similarly, there are linking constraints corresponding to the number of

thermal generators ngoth
i,r,t, the number of renewable generators ngorn

i,r,t, the

number of storage units nsoj,r,t per region r and year t. These linking con-

straints can be found in equations (1), and (A.17), (A.20), (A.24) in Appendix

A in supplementary material.

From the above observation, variables ntel,t, ngo
th
i,r,t, ngo

rn
i,r,t, nsoj,r,t can

be treated as complicating variables. Once these variables are fixed, the GTEP

problem can be decomposed by year. The nested Benders decomposition con-

sists of two phases, i.e., forward pass and backward pass. In the forward pass,

the problem is solved sequentially year after year. In each year t, the problem is

solved in a myopic way, with the complicating variables of year t− 1 fixed, and

the cutting planes generated from the backward pass. The optimal solution is

obtained for year t. Then the complicating variables are fixed for year t and the

problem for year t+ 1 is solved, until we reach the end of the planning horizon.

In the backward pass, cutting planes can be generated by solving the LP

relaxations of the planning problem with the complicating variables fixed at the

values of the forward pass. The backward pass starts from the last year and

sequentially adds cutting planes to the previous year. Since the nested Ben-

ders decomposition is developed by Lara et al. (2018) for the GEP model, we

do not provide the details of the algorithms. The steps of the nested Benders

algorithms are similar to those in Lara et al. (2018), except that in the GTEP

problem we introduce new complicating variables ntel,t pertaining to transmis-

sion expansion. An additional difference is that while in Lara et al. (2018)

three different types of cutting planes are implemented in the backward pass,

i.e., Benders cuts, strengthened Benders cuts, and Lagrangean cuts, we only

implement Benders cuts to solve the GTEP problem because this type of cut is

computationally cheap.
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4.2. Tailored Benders decomposition algorithm

Instead of solving the GTEP problem sequentially by year as in the nested

Benders decomposition, we treat all the investment-related variables as com-

plicating variables and include all these variables in a single Benders master

problem.

More specifically, the proposed GTEP model can be represented using the

succinct form (20) below, where xt represents all the investment decisions in

year t, yt represents all the operating decisions in the representative days for

year t. Note that the investment decisions are made on a yearly basis indexed

by t. The operating decisions not only have the index t but also have indices d

and s, which represent the dth representative day in the sth hour, respectively.

Since we will decompose the problem by year, we omit the indices d and s and

simply use yt to represent all the operating decisions corresponding to year t.

Equations (20c) and (20d) are investment related constraints, which correspond

to equations (1), (A.14)-(A.21), (A.23), (A.24). Equations in (20b) describe the

operational decisions of each year, such as the power flow equations (2) and (3).

Note that equation (20b) can be decomposed by year. Equation (20e) represents

the integrality constraints and variable bounds that xt and yt have to satisfy.

min
∑
t∈T

c>t xt + d>t yt (20a)

s.t. Atxt +Btyt ≤ bt ∀t ∈ T (20b)

C1x1 ≤ f1 (20c)

Ct−1xt−1 +Dtxt ≤ ft t = 2, 3, . . . , |T | (20d)

xt ∈ Xt, yt ∈ Yt ∀t ∈ T (20e)

The GTEP problem has a decomposable structure in the sense that if we treat all

the investment decisions xt for all t ∈ T as complicating variables, the problem

can be decomposed by year. Benders decomposition (Rahmaniani et al., 2016)
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can be applied to solve this type of problem. We can assign all the investment

variables to the Benders master problem and the operating variables yt to the

tth subproblem. After solving the Benders master problem, the investment

decisions are fixed and each Benders subproblem can be solved independently.

Note that there are some integer variables in the operating decisions, such as

the number of generators that are on/off. In order to generate valid Benders

cuts, we solve the LP relaxation of each Benders subproblem and add the cuts

to the Benders master problem. A high level description of the algorithm is

provided in Figure 2. The formulation of the Benders master problem solved at

Investment	decisions	 for	the		planning	horizon	Benders	master	problem

….
Year	T	

operating	
decisions	

Year	1	
operating	
decisions	

Year	2	
operating	
decisions	Benders	subproblems

Subproblems are	decomposed	 by	year	

Add	Benders	cutsFix	investment	decisions

Figure 2: Tailored Benders decomposition algorithm applied to the GTEP problem

iteration k is:

min
∑
t∈T

c>t xt + ηt (21a)

s.t. C1x1 ≤ f1 (21b)

Ct−1xt−1 +Dtxt ≤ ft t = 2, 3, . . . , |T | (21c)

ηt ≥ η̃k
′

t +
(
µk′

t

)>(
x̃k

′

t − xt
)

t ∈ T , k′ < k (21d)

xt ∈ Xt ∀t ∈ T (21e)

where equation (21d) are the Benders cuts generated by solving the Benders

subproblems. We denote the optimal solution of the Benders master problem

at iteration k as x̃kt , ∀t ∈ T .

Fixing the values of the investment decision variables to the values obtained
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at the master problem, i.e., xt = x̃kt , ∀t ∈ T , we can solve each Benders sub-

problem independently for each year t ∈ T :

η̃kt = min d>t yt (22a)

s.t. xt = x̃kt (22b)

Atxt +Btyt ≤ bt (22c)

yt ∈ Ỹt (22d)

where all the integer variables in yt are relaxed and set Ỹt represents set Yt

without the integrality constraints, i.e, Ỹt only represents variables bounds for

yt. Let µk
t be the optimal dual multiplier for equation (22b). A valid Benders

cut,

ηt ≥ η̃kt +
(
µk
t

)>(
x̃kt − xt

)
can be generated by solving the tth subproblem. The cuts from the subprob-

lems are then added to the master problem via equation (21d). Note that the

Benders subproblem (22) can be infeasible. In this case, a feasibility subprob-

lem should be solved to generate feasibility cuts. Interested readers can refer

to (Rahmaniani et al., 2016) for the definitions of feasibility cuts. To simply

notation, we assume that the subproblems are feasible here.

At each iteration k, the Benders master problem provides a lower bound of

the optimal objective function value with relaxed yt variables, while an upper

bound can be calculated as
∑

t∈T c
>
t x̃

k
t + d>t ỹ

k
t where x̃kt and ỹkt are the op-

timal solutions to the master problem and the subproblems, respectively. We

keep iterating between the Benders master problem (21) and the subproblems

(22) until the upper bound and the lower bound lie within certain optimality

tolerance.

For our computational study, we use the Benders implementation from
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CPLEX (Bonami et al., 2020), which is a branch-and-Benders-cut algorithm.

We only need to specify the variables in the master problem and the variables

in each subproblem and CPLEX automatically solves the GTEP problem using

Benders decomposition. Note that the implementation in CPLEX uses a single

branch-and-bound tree where Benders cuts are added as lazy constraints. The

Benders subproblems are solved whenever a feasible solution is found in the

branch-and-bound tree of the master problem. The corresponding optimality

or feasibility cuts will be added to the master problem dynamically in the single

branch-and-bound tree.

Since the integrality constraints of the yt variables are relaxed within the

Benders decomposition algorithm, we can only obtain a lower bound to the

original GTEP problem (20) through this algorithm. In order to obtain a feasible

solution to the original problem, i.e., an upper bound, we can fix the investments

decisions xt to the optimal solution of the Benders decomposition algorithm and

solve the operating problem with the integrality constraints of the yt variables

for each year independently. Moreover, as a result of the relaxation of the

integrality constraints corresponding to the yt variables, there will be a gap

between the lower bound and the upper bound. However, our computational

results in section 5 show that this gap is small. The reason is that all the

integer variables in yt are general integer variables instead of binary variables.

Typically, mixed-integer programs with general integer variables have good LP

relaxations.

5. Case studies

5.1. Input data

We carry out a GTEP case study for ERCOT. The spatial representation

of the ERCOT region has been discussed in subsection 2.4. It is divided into

four geographical regions: Northeast, West, Coast and South. Besides these

regions, a fifth region, Panhandle, is also included, which is technically outside

the ERCOT region, but due to its renewable generation potential, it supplies
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electricity to the ERCOT regions. Note that in our model, Panhandle is treated

as a pure supplier, i.e., it has zero load. The map of the five regions is shown

in Figure 1.

Each of the five regions are treated as a bus and a DC power flow model is

considered. We specify a city for each region as the location of the bus. The

center for Northeast, West, Coast, South and Panhandle are Dallas, Midland,

Houston, San Antonio, and Amarillo, respectively. The lengths of the transmis-

sion lines are determined by the distance between the centers of any of the two

neighboring regions. To test the GTEP model, we assume that no transmis-

sion lines are available, i.e., the model will identify the transmission lines to be

built. We assume that for each pair of the two neighboring regions, at most 10

candidate transmission lines can be built. The susceptance and capacity of the

transmission lines are all the same, which are obtained from a synthetic grid

of Texas (Birchfield et al., 2016). The unit capital cost of transmission lines is

$1,919,450 per mile obtained from (Andrade and Baldick, 2016).

Old and new generation technologies have been described in subsection 2.1.

The investment cost, fixed and variable operating costs for different genera-

tion technologies are obtained from the National Renewable Energy Labora-

tory (NREL), available in the 2016 Annual Technology Baseline (ATB) Spread-

sheet (Cole et al., 2016). The capital cost, power rating, rated energy capacity,

charge and discharge efficiency and storage lifetime of the storage units are from

(Schmidt et al., 2017). We consider a 20 year time horizon, in which the first

year is 2019. The fuel price data for coal, natural gas and uranium correspond

to the reference scenario in U.S. Energy Information Administration (2019). A

discount rate of 5.7% as chosen in Short et al. (2011) is used. We assume that

the undiscounted carbon tax is zero in the first year and grows linearly across

years to $325/tonne CO2, which is on the high side compared with most forecast

scenarios reported in McFarland et al. (2018). The curtailment cost is assumed

to be $5,000/MWh.

The hourly solar capacity factor profiles including photo-voltaic (pv) and

concentrated solar power (csp), are calculated based on the national solar radi-
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ation data base (NSRDB) (Sengupta et al., 2018) in 2012 via the System Advisor

Model (SAM) (Blair et al., 2014). The hourly wind capacity factor profiles are

calculated based on the wind speed from the wind integration national dataset

(wind) toolkit (Draxl et al., 2015) in 2012 using one power curve from SAM.

Since load data are correlated with solar and wind capacity factors, to generate

the hourly load profiles we take load data from ERCOT in 2012 and scale them

so that the annual load for each ERCOT region is equal to the annual load in

2019. To sum up, we have 365 days (the leap day is excluded) of 24 hour solar

and wind capacity factor and load data. The capacity factors are assumed to be

unchanged over the planning horizon. The annual load growth rate is assumed

to be 1.4% calculated based on the historical load data from 2011 to 2018 (ER-

COT, 2106). To select the representative days for the GTEP model, we use

the software package, TimeSeriesClustering.jl developed by Teichgraeber and

Brandt (Teichgraeber and Brandt, 2019). By using this package, we are able to

apply the k-means clustering algorithm to the time series and select the centroid

of each cluster as the representative day. The weight of each representative day

is proportional to the number of data points in that cluster. The details of the

clustering algorithms are described in Teichgraeber and Brandt (2019). There

is a trade-off between computational complexity and model fidelity in selecting

the number of representative days. Here, we adopt a trial-and-error approach

and gradually increase the number of representative days until the investment

decisions do not change significantly. Due to the length constraint of the pa-

per, the sensitivity analysis with respect to the number of representative days

is given in Appendix D of the supplementary material. The results with 15 rep-

resentative days are reported in subsection 5.3 because the solutions stabilize

after the number of representative days is increased to 15.

5.2. Comparison of formulations and algorithms

All the MILP formulations are implemented in Pyomo/Python (Hart et al.,

2011). We first solve the GTEP model directly with CPLEX 12.9.0.0. We com-

pare the three transmission expansion formulations proposed in subsection 3.1.
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All the problems in this paper are solved using one processor of an Intel Xeon

(2.67GHz) machine with 64 GB RAM. The time limit is set to 10 hours. The

number of general integer variables, binary variables, continuous variables, and

constraints of the fullspace GTEP problem with the three different formulations

are given in Table 1. The upper bound (UB), lower bound (LB) of the optimal

value of the objective function in billion dollars and the wall time in seconds

are also shown in Table 1. All the three formulations have the same number

of general integer variables and binary variables but differ in the number of

continuous variables. The standard big-M formulation uses the fewest number

of continuous variables and constraints. CPLEX is not able to find a feasible

solution (UB) for any of the three formulations within the prespecified time

limit. The lower bound column (LB) provides the bound that CPLEX returns

at termination. In fact, we direct CPLEX to solve the LP relaxation for each of

the three formulations, but CPLEX was not able to return a solution for any of

the formulations within the 10-hour time limit, regardless of the LP algorithm

chosen.

Table 1: Computational statistics for the fullspace problem with 4 representative days

Formulation Int Var Bin Var Cont Var Constraints UB ($109) LB ($109) Wall time (sec)

big-M 274,920 2,800 564,826 1,543,966 - 21.13 36,000
alternative big-M 274,920 2,800 1,102,426 2,081,566 - 21.13 36,000

hull 274,920 2,800 833,626 2,081,566 - 281.73 36,000

We also test the two decomposition algorithms described in section 4. The

nested Benders decomposition is implemented in Pyomo/Python (Hart et al.,

2011). The tailored Benders decomposition implementation is from CPLEX

(Bonami et al., 2020), which is called using the Pyomo persistent solver interface

(Siirola, 2017). The computational results of the two proposed decomposition

algorithms are shown in Table 2.

The tailored Benders decomposition algorithm is able to solve all the three

formulations to within 1% optimality gap within 10,000 seconds.

For the nested Benders decomposition, we observe that the forward pass

with integrality constraints is expensive to solve. Therefore, we make a change
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in the implementation so that we first use the nested Benders decomposition

algorithm to solve the LP relaxation of the problem until the LP relaxation is

solved to optimality or we reach the time limit of 10 hours or the iteration limit

of 100. Then we perform one single forward pass with the integrality constraints

to obtain a feasible solution. Although the nested Benders decomposition can

obtain an upper bound and a lower bound to all the three formulations, the

optimality gaps are large compared to the results from the tailored Benders

decomposition. In fact, in none of the three formulations is the nested Benders

decomposition able to solve the LP relaxation of the problems to optimality

within the time limit. Note that the performance of the nested Benders decom-

position is quite different from the numerical experiments on the GEP model

performed by Lara et al. (2018) for the GEP model where the nested Benders

decomposition performs well. The reason for this difference could be due to

the complication brought by the transmission expansion constraints and the

DC power flow equations of the GTEP model. As a result, the subproblems

become larger and more dual degenerate, which makes nested Benders decom-

position take not only more time to solve each iteration but also more iterations

to converge.

Table 2: Computational results of the two proposed decomposition algorithms using different
formulations

Algorithm Formulation UB ($109) LB ($109) Gap Wall time (secs)

tailored Benders big-M 283.7 282.6 0.38% 5,115
tailored Benders alternative big-M 283.9 281.6 0.82% 3,693
tailored Benders hull 282.6 280.6 0.71% 8,418
nested Benders big-M 295.7 268.9 9.98% 53,682
nested Benders alternative big-M 294.2 265.5 10.81% 43,389
nested Benders hull 288.0 269.3 6.97% 37,577

From this numerical experiment, the tailored Benders decomposition algo-

rithm with the alternative big-M formulation proves to be the fastest. We adopt

this algorithm-formulation combination for the rest of the experiments in this

paper.

Some additional computational statistics on this problem with 4 represen-

tative days including the problem sizes after presolve, the performance curves
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for the nested Benders decomposition, the sizes of the Benders master problem

and subproblem are shown in Appendix C of the supplementary material.

5.3. Results with 15 representative days

We improve the fidelity of the model by increasing the number of repre-

sentative days to 15. The 15 representative day model with the alternative

big-M formulation has 2,800 binary variables, 1,024,680 general integer vari-

ables, 4,120,606 continuous variables, and 7,787,266 constraints. The proposed

tailored Benders decomposition algorithm is able to solve the problem in 33,207

seconds with an upper bound of 301.1 ($109), a lower bound of 299.9 ($109) and

an optimality gap of 0.4%.

The capacities of different generation technologies from 2019 to 2038 are

shown in Figure 3. The results include high capacities of solar and wind. The

aggregated natural gas capacity of the five regions increases in the first few

years, reaches its peak in 2024 and gradually decreases afterwards due to the

retirement of old generators and the increase in carbon tax, which makes the

natural gas generators less competitive compared with solar and wind genera-

tors. The nuclear capacities are unchanged throughout the planning horizon.

The coal capacities are unchanged in the first few years and start decreasing in

2029 because of reaching their nominal lifetimes. No storage unit is installed.

Therefore, the renewable generation when the net load is negative has to be

curtailed. The total discounted renewable curtailment cost is 1.64 billion in 20

years.
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Figure 3: Aggregated generation expansion results
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Geographically, most of the solar and wind capacity additions are projected

to take place in the West and Panhandle regions because the capacity factors

for solar and wind are higher in these two regions. The projected capacity

for natural gas in the four regions, i.e., Coast, Northeast, South, and West, are

shown in Figure 4. It can be seen that most natural gas expansions are expected

to take place in the Northeast and Coast regions where the absolute increase

in load is high and capacity factors for renewables are relatively low. In the

West region, where the absolute load increase is low and the capacity factors

for renewable generation are high, we observe very marginal changes in natural

gas capacity. In the South region, natural gas capacity increases in the first few

years and reaches a peak in 2025. After 2025, natural gas capacity decreases

over the years due to the retirement of old generators. The load growth in South

is satisfied by power transfers from West region, which we analyze below.
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Figure 4: Projected capacities for natural gas in Coast, Northeast, South, and West

The number of transmission lines built over the planning horizon are shown

in Figure 5. Most of the transmission lines are built for Northeast-Panhandle

and South-West in order to transfer the power generated by the renewable

sources in West and Panhandle to other regions. Note that we assume that

no transmission lines are built a priori. It is clear that there are correlations

between the geographical locations of the generation technologies and the trans-

mission expansion decisions.

Figure 6 shows the aggregated power flow through all the installed transmis-

sion lines at a peak load time period (t = 20, d = 15, s = 24). The directions

and the magnitudes of the power flows are represented by the red arrows and
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Figure 5: Transmission expansion results

numbers in this Figure. The most significant power flows are from Panhandle

to Northeast and from West to South due the surplus of their renewable energy

generation.

2.73

2.41

8.63

0.44

6.05
10.72

Power	flow	 (GW)

Figure 6: Aggregated power flow directions and magnitudes for all the transmission lines at
t = 20, d = 15, s = 24

5.4. Sensitivity analysis of input generator data

The generation capacity expansion planning results can be sensitive to the

forecast of future capital cost and operating cost of the potential generating
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units. Recall that generator cost data for the previous analysis are from the

National Renewable Energy Laboratory (NREL), available in the 2016 Annual

Technology Baseline (ATB) Spreadsheet (Cole et al., 2016). We switch the cap-

ital cost and operating cost data for all the generators to internal data from

IHS Markit and re-run the Benders decomposition experiment with 15 repre-

sentative days. The proposed tailored Benders decomposition algorithm is able

to solve the problem in 51,445 seconds with an upper bound of 294.4 ($109),

a lower bound of 293.7 ($109) and an optimality gap of 0.2%. The increase in

computational time compared with using NREL data is 67%.

The generation expansion results are shown in Figure 7. The major change

is that the IHS Markit results favors more wind and less solar compared with

the results shown in Figure 3. To give some insight on why this happens, we find

that the overnight cost of the wind generating units in the IHS Markit dataset

is 25% lower than that in the NREL dataset in the first year of the planning

horizon. In contrast, the overnight cost for the PV generating units is only 11%

lower in the first year.
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Figure 7: Generation expansion results using generating unit cost data from IHS Markit

6. Conclusions

In this paper, we address generation and transmission expansion planning

(GTEP) problem by developing MILP formulations and solution techniques.

We consider both thermal and renewable technologies as expansion candidates.

26



Operating and transmission constraints are included in the model, which leads

to large scale problems. To limit the size of the GTEP model, several simpli-

fications are made. We aggregate the generators that use the same technology

assuming that they have the same design parameters. We also spatially aggre-

gate regions with similar climate and load profiles. For example, the ERCOT

is divided into five regions. Each region represents one bus in the power flow

model. Therefore, we only consider the expansion of tielines between regions.

In terms of temporal representation, we select some representative days with

hourly load and capacity factor data. The representative days are selected by a

clustering algorithm such as k-means clustering.

The model is a multi-scale MILP model with both investment decisions and

operating decisions. We compare three different formulations for transmission

expansion, i.e., the big-M formulation, the hull formulation and the alternative

big-M formulation. We prove that the alternative big-M (ABM) formulation has

the same feasible region as the big-M formulation (BM) when projected onto

the space of the variables involved in the big-M formulation. Computational

experiments are performed as well for the three formulations, but it is hard to

identify a clear winner among the three formulations.

Two solution techniques, a nested Benders decomposition algorithm and a

tailored Benders decomposition algorithm, are proposed. Both algorithms de-

compose the planning problem by year. The nested Benders decomposition

solves each year sequentially in a forward and backward pass manner. The

Benders decomposition defines a master problem that deals with the invest-

ment decisions and a number of subproblems corresponding to representative

operating decisions for a given year. The tailored Benders decomposition algo-

rithm outperforms the nested Benders decomposition one in our computational

experiments.

An ERCOT case study is used to demonstrate the GTEP model and the

solution techniques. The tailored Benders decomposition is able to solve the

20 year planning problem with 15 representative days. The capacity expansion

mix for ERCOT will mainly include solar and wind capacities in the West and
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Panhandle regions. The transmission lines are mainly built to transfer power

from solar and wind rich regions to the South and Northeast regions of ERCOT,

which shows that the generation and transmission decisions are correlated. Co-

optimization of generation and transmission has the potential of bring additional

value to the system operator/regulator than solving the two planning problems

independently.

Several future directions can be pursued. First, the deterministic GTEP

model can be extended to a multi-stage stochastic programming framework

by considering uncertainties in load growth rate, carbon tax, etc. Second, the

benefit of using DC power flow compared with the network flow model is limited

in a small scale problem. It is worth testing the model in a problem with larger

number of nodes to test the scalibility of the proposed approach. Third, the

computational performance of both decomposition algorithms can be improved

using warm-start techniques where a number of cuts can be generated at the

beginning based on the solutions obtained from some heuristics. Fourth, the

reliability of the system can be improved by adding contingency constraints.
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Appendix A

We provide a succinct version of Appendix A here for easy reading. The detailed nomen-
clature and descriptions can be found in supplementary material.∑

i

(
pi,r,t,d,s

)
+

∑
l|r(l)=r

pflow
l,t,d,s −

∑
l|s(l)=r

pflow
l,t,d,s +

∑
j

pdischarge
j,r,t,d,s

= Lr,t,d,s +
∑
j

pcharge
j,r,t,d,s + cur,t,d,s ∀ r, t, d, s

(A.1)

pi,r,t,d,s = Qgnp
i,r · Cfi,r,t,d,s · ngo

rn
i,r,t ∀ i ∈ IRN

r , r, t, d, s (A.2)

ui,r,t,d,s = ui,r,t,d,s−1 + sui,r,t,d,s − sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (A.3)

pi,r,t,d,s − pi,r,t,d,s−1 ≤ Rumax
i ·Hs ·Qgnp

i,r · (ui,r,t,d,s − sui,r,t,d,s)
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(A.4)
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