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In this paper, we study shale gas pad development under

natural gas price uncertainty. We optimize the sequence

of operations, gas curtailment and storage on a single pad

tomaximize the net present value (NPV). The optimization

problem is formulated as anmixed-integer linear program-

ming (MILP) model, which is similar to the one proposed

by Ondeck et al.1. We investigate how natural gas price

uncertainty affects the operation strategy in the pad de-

velopment. Both two-stage andmulti-stage stochastic pro-

gramming are used as themathematical framework to hedge

against uncertainty. Our case study shows that there is value

of using stochastic programming when the price variance is

high. However, when the variance of the price is low, solv-
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ing the stochastic programming problems does not create

additional value compared with solving the deterministic

problem.
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1 | INTRODUCTION

According to the Annual Energy Outlook 2019 published by the EIA2, the production of natural gas is expected to
grow by 50% in the next 30 years. The growth in natural gas production supports increasing domestic consumption,
particularly in the industrial and electric power sectors, and higher levels of natural gas exports. In Figure 1, the
prediction of the consumption and the production of dry natural gas in the U.S. is shown under different sensitivity
cases. We can observe that there will likely be an increase in both the production and the consumption of dry natural
gas even in the case of low economic growth and low oil price.

The increase in natural gas production is driven by continued development of lower-cost shale gas resources. The
Annual EnergyOutlook 20192 shows that dry natural gas production from shale gas and tight oil continues to grow
in both share and absolute volume because of the sheer size of the associated resources, which extend over nearly
500,000 squaremiles, and because of improvements in technology that allow for the development of these resources at
lower costs. Shale gas is expected to account for 90% of U.S. dry natural gas production in 2050.

Despite the significant role that shale gas plays in the energy industry, the shale gas industry is still young3 . Recently,
the optimization of shale gas systems has drawn increasing attention in academia. Many shale gas companies4 also
start to apply optimizationmodels to make better use of their resources. A common problem that arises in the shale gas
industry is the operation of a single shale gas wellpad as it affects the whole natural gas supply chain. Recently, Ondeck
et al.1 proposed anMILP (mixed-integer linear programming) model that considers the economical development of a
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F IGURE 1. The prediction of natural gas production and consumption in different sensitivity cases

shale gas pad and the optimal production of shale gas.

To develop a well to production (Figure 2), four operationsmust take place in the following order: 1) top setting
(TS), 2) horizontal drilling (HZ), 3) hydraulic fracturing (FRAC), and 4) turning in line (TIL). The first operation, top setting,
is the process of drilling a well down to the selected shale gas formation and properly encasing the well to prevent the
release of gas and other chemicals into the ground surrounding the well bore. Once the vertical part of the well has
been developed, the next step is horizontal drilling (HZ), which is followed by fracturing (FRAC). Fracturing refers to
the injection of a fracturing fluid into a geologically tight formation under high pressure of up to 70MPa. Once the
fracturing is complete, the well can be turned in line to release the gas. Based on the desired production, the entire well
or sections of thewell can be turned in line. From start to finish, the process of completing a well can take anywhere
from a fewweeks to twomonths, based on the geology of the subsurface, the length of the well, and the availability of
resources.

Ondeck et al.1 point out that traditionally, upstream operators complete one operation for all the wells in a single
wellpad beforemoving to the next operation to reduce themobilization of their crew and equipment. However, there
are several drawbacks for this type of operating strategy. First, since all the wells are turned in line around the same
time, there is a dramatic increase of natural gas production in this single pad. Therefore, pipelines with large capacities
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F IGURE 2. The four operations necessary to develop a well to completion: (a) top setting, (b) horizontal drilling, (c)
hydraulic fracturing, and (d) turning in line.

are needed in order to deliver the natural gas to the customers. Second, since the wells cannot be turned in line until all
the first three operations are completed for all the wells in the pad, the lateness of turning in line incurs a loss in the net
present value (NPV) comparedwith the strategy in which some of the wells are turned in line before all the first three
operations are completed for all the three wells. Third, the production of a typical shale gas well decreases sharply after
the first year of turning in line. Therefore, if all the wells are turned in line around the same time, there will be a period
with little gas production.

From our analysis on the conventional strategy of single pad operations, there is a tradeoff between avoiding the
mobilization costs, and turning the well in line earlier tomaximize the production NPV. In the paper byOndeck et al.1,
the authors perform a sensitivity analysis by varying themobilization costs. Consideringmobilization costs tends to
affect the schedule of the single pad development.

This paper follows the work of Ondeck et al.1 and investigates whether price uncertainty affects the optimal
strategy of single pad development. Stochastic programming5 is used as the mathematical framework to model
decision-making under uncertainty. Wewill give the general framework, insights and solutionmethods about stochastic
programming in section 5.
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The This paper is organized as follows. In section 2, we review some related work on the optimizationmodels in the
shale gas industry. The deterministic model for single pad planning is described in section 3. We provide themotivation
for using stochastic programming tomodel the single pad development problem in section 4. A brief introduction to
stochastic programming is given in section 5. Several case studies are given in section 6 to demonstrate whether using
stochastic programming can create additional value compared with the deterministic model. We draw the conclusions
in section 7.

2 | RELATED WORK

In this section,we review the literature related to theoptimizationof shale gas systems. Wefirst review thedeterministic
models. The models that consider uncertainty are relatively few and are reviewed at the end of this section. The
deterministic optimizationmodels for shale gas development can be grouped into three levels based on the time scale:
design/planning, scheduling, and operating.

The design/planning models correspond to long term decisions, usually for more than a decade. The decisions
involved in these long-term models usually include the design of shale gas network, such as the layout of pipelines,
and planning decisions such as the number of wells to drill. The constraints usually include mass/resource balance
constraints, network design constraints, etc. The objective is usually to maximize NPV. Cafaro and Grossmann6 present
a mixed-integer nonlinear programming (MINLP) model for the strategic planning, design, and development of the shale
gas supply chain network where they determine planning decisions such as the number of wells to drill at every location,
and design decisions, such as the size of gas processing plants, the length and diameter of the pipelines so as tomaximize
the net present value of the project. Following the work of Cafaro and Grossmann6 , Drouven and Grossmann7 propose
anMINLPmodel that involves planning, design, and strategic decisions such as where, when, and howmany shale gas
wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Guerra et al.8

propose an optimization framework for the integration of watermanagement and shale gas supply chain design. Gao
and You9 propose anMINLPmodel that addresses the life cycle economic and environmental optimization of shale
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gas supply chain network design and operations. Arredondo-Ramírez et al.10 use a disjunctive programming-based
approach to account for complex logical relationships in the optimal planning of shale gas exploitation and infrastructure
development.

The optimal scheduling of operations for shale gas development considers shorter time period than in plan-
ning/design. The constraints in the scheduling models usually include sequence of operations, resource availability
constraints. The objective can bemaximizing NPV orminimizing environmental impact. Knudsen et al.11 formulate
anMILPmodel, which is solved using Lagrangean decomposition, for shut-in scheduling in large, multi-well shale-gas
systems. Cafaro et al.12 propose a continuous timeMINLPmodel and a discrete timeMILPmodel for planning shale
gas well refracture treatments. Cafaro et al.13 propose a continuous time optimization model for planning multiple
refracture treatments over the lifespan of a shale gas well. Yang et al.14 propose anMILPmodel that addresses source
water acquisition, waste water production, reuse and recycle, and subsequent transportation, storage, and disposal in
shale gas production. Ondeck et al.1 consider the scheduling of the four operations in a single wellpad.

At the operational level, decisions are made on a daily to weekly time scale. Forouzanfar and Reynolds15 formulate
a continuous optimizationmodel to simultaneously optimize the number of wells, their locations and controls. Wilson
andDurlofsky16 develop a surrogatemodel to accuratelymodel complex shale gas reservoirs and further use themodel
for shale gas field development optimization. Others17,18 have studied the placement of hydraulic fracture stages.

Themodels for shale gas development that consider uncertainty are relatively few. Drouven et al.19 apply two-
stage stochastic programming in a moving horizon approach for optimal shale well development and refracturing
planning under exogenous gas price uncertainty and endogenouswell performance uncertainty. Gao and You20 develop
a two-stage stochastic mixed integer linear fractional programming (SMILFP) model to optimize the levelized cost of
energy generated from shale gas under uncertainty of estimated ultimate recovery (EUR). Guerra et al.21 develop a
two-stage stochastic model embedded in a moving horizon strategy to dynamically solve the planning of shale well
development and refracturing. Zeng and Cremaschi22 propose stochastic programming models to the artificial lift
infrastructure planning for shale gas producing wells.
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3 | PROBLEM STATEMENT FOR THE DETERMINISTIC MODEL

The deterministic problem addressed in this article is similar to the one proposed byOndeck et al.1. We consider the
shale gas development problem for a single wellpad represented in Figure 3. The potential wells are identified a priori.
The productivity profile for each well is also given. In order to complete a shale gas well, four operations, i.e., top setting,
horizontal drilling, fracturing, turning in line, need to be done sequentially. The corresponding equipment needs to be
disassembled once the operation on the wellpad is changed and there is a mobilization cost for the change of operation.

We consider gas curtailment in the model, i.e., the the amount of gas produced can be less than the amount
determined by the production curve. The curtailed gas is stored in the well and can be released in future time periods.
Instead of modeling the storage of curtailed gas in each well, we simplify the problem by considering virtual storage of
the whole wellpad. It should be noted that the storage considered in themodel is virtual storage, i.e., the curtailed gas is
stored under the wellpad itself. We are not considering “real" storage like storage tanks.

The decisions in themodel are: 1) when andwhichwells should be developed to completion, 2) the timing of the
operations performed on the well, 3) when and how much gas should be released from the completed wells. 4) the
amount of gas coming in and out of storage at each time.

Themajor assumptions in this work are:

1. The locations and the information related to the development and the production of the prospective wells are
known a priori. This includes the lengths of the wells as well as the production curves, which are functions of the
wells’ horizontal drilling lengths. The wells are optimally placed laterally such that well interference does not occur,
i.e., the production curve of any givenwell is not affected by its neighboring wells.

2. Well shut-in is not allowed, i.e., once a well is turned in line, it cannot be shut-in.
3. The development cost for all four operations and the time to complete each operation are known for each well.
4. Every operation is performed for the entire well. Awell cannot be “partially" completed. Note that this requirement

is removed in the stochastic programmingmodels because in some of the scenarios in the stochastic model, it is no
longer profitable to finish all the operations.
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F IGURE 3. Prospective pad

5. Every operation can be performed at most once at a well. There are no refracturing of wells at a later time.
6. The development resourcemobilization cost is a one time fee that includes transportation, assembly, and disassem-

bly. The value is an assumed estimate, calculated based on past experience.
7. The optimization is solved using a discrete timemodel with time intervals of oneweek.

Since the mathematical formulation of the deterministic model is similar to1, we include the description of the
MILPmodel in Appendix A. The focus of this paper is on the extensions of the deterministicMILPmodel, which consider
uncertainty in natural gas price.

4 | MOTIVATION FOR A STOCHASTIC PROGRAMMING MODEL

Although the deterministic model for the single pad shale gas development problem has been studied by1, there is no
model for single pad planning that considers uncertainty in the parameters to the planningmodel.

Natural gas price is a major source of uncertainty in the planning problem. Henry Hub natural gas spot prices
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F IGURE 4.Historical natural gas price

from 1998-201823 are shown in Figure 4. It is easy to observe that the natural gas price has fluctuated significantly
in the past 20 years. Natural gas price has reached as high as over 15 dollars per Btu in 2006. Hydraulic fracturing
has currently reduced the Henry Hub spot price of natural gas to about 3 dollars per Btu. On the one hand, upstream
operators would like to developmorewells when the price is high. On the other hand, there are also scenarios where
natural gas is no longer a profitable business.

Therefore, in this paper, we investigate the effect of the uncertainties fromnatural gas price on the optimal decision-
making in the pad development problem. Since the decisions involved in the pad development are long-term decisions,
usually ranging from a fewmonths to years, we use stochastic programming tomaximize the expected net present value.
A brief introduction to stochastic programming is given in the next section.

5 | INTRODUCTION TO STOCHASTIC PROGRAMMING

Stochastic programming is an optimization framework that deals with decisionmaking under uncertainty5 . In stochastic
programming, it is assumed that the probability distributions of the uncertain parameters are known a priori. The
uncertainties are usually characterized by some discrete realizations of the uncertain parameters as an approximation
to the continuous probability distribution. For example, the realizations of the demand of a product can have three
different values which represent high, medium, and low demand, respectively. Each realization is defined as a scenario.
The objective of stochastic programming is to optimize the expected value of an objective function (e.g., the expected
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cost) over all the scenarios.

5.1 | Two-stage stochastic programming

A special case of stochastic programming is two-stage stochastic programming (Figure 5). Specifically, stage 1 decisions
aremade ‘here and now’ at the beginning of the period, and are then followed by the resolution of uncertainty. Stage 2
‘wait and see’ decisions, or recourse decisions, are taken as corrective actions at the end of the period. One common
type of a two-stage stochastic program is themixed-integer linear program presented in equation (1). SetΩ is the set
of scenarios. Parameter τ(ω) is the probability of scenario ω. The n-dimensional vector x represents the first stage
decisions, while them-dimensional vector y (ω) represents the second stage decisions in scenarioω. Both x and y (ω)
variables can bemixed-integer. Without loss of generality, we assume that the first n1 (n1 ≤ n) variables of the first stage
decisions and the firstm1 (m1 ≤ m) variables of the second stage decisions are binary. The uncertainties are reflected in
thematrices (vectors),W (ω),T (ω), h(ω). Equation (1) is often referred to as the deterministic equivalent of the two-stage
stochastic program. This problem can be solved directly if the number of scenarios is modest; if the number of scenarios
is large, special decomposition algorithms, such as Benders decomposition24, can be used. However, if we have (mixed)
integer stage two variables, Benders decomposition is not applicable.

min cT x +
∑
ω∈Ω

τ(ω)dT (ω)y (ω) (1a)

s.t. Ax ≤ b (1b)
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F IGURE 5. Two-stage problem

W (ω)y (ω) ≤ h(ω) −T (ω)x [ω ∈ Ω (1c)

x ∈
{
x = (x1, x2) : x1 ∈ {0, 1}n1 , x2 ≥ 0} (1d)

y (ω) ∈
{
y = (y1, y2) : y1 ∈ {0, 1}m1 , y2 ≥ 0} (1e)

5.2 | The value of stochastic solution

The value of stochastic solution (VSS)5 is used to quantify the value that stochastic programming yields compared with
the deterministic model. We need to define some notation before we present themathematical expression for VSS. Let
ξ(ω) be the vector that represents the random parameters involved in the two-stage stochastic programming problem
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for scenarioω. DefineQ (x , ξ(ω))

Q (x , ξ(ω)) = cT x +min
y
dT (ω)y (2a)

s.t. W (ω)y ≤ h(ω) −T (ω)x , y ∈
{
y = (y1, y2) : y1 ∈ {0, 1}m1 y2 ≥ 0

} (2b)

as the optimization problem associated with one particular realization of random parameter ξ. The expected value of ξ
is defined as ξ̄. The expected value solution is defined as

x̄ (ξ̄) = argmin
x
Q

(
x , ξ̄

) (3)

where the parameter ξ is fixed at its expected value ξ̄. In order to quantify how the expected value solution performs in
different scenarios, we define the expected results of using the expected value solution (EEV) as

EEV = Åξ
[
Q

(
x̄ (ξ̄), ξ

) ] (4)

The recourse problem (RP), i.e., the two-stage stochastic program, is defined as

RP = min
x
ÅξQ (x , ξ) (5)
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which chooses the first stage decisions x thatminimizes the expected value ofQ (x , ξ). The difference of EEV and RP can
quantify the difference of the expected cost between the expected value solution and the stochastic solution. Therefore,
it is reasonable to define EEV − RP as the value of stochastic solution (VSS),

V SS = EEV − RP (6)

VSS quantifies the difference between the expected outcome of the optimal stochastic solution and optimal expected
value solution. Therefore, VSS is a metric that can evaluate the additional value that stochastic programming can create
compared with the deterministic model. In practice, it is only worth solving the stochastic programmingmodel if VSS is
significant for the decision-maker.

5.3 | Multistage stochastic programming

The two-stage decision-making process can be generalized to account for multiple stages. Multistage stochastic
programmingmodels allow recourse decisions in each stage coming after stage one. Hence, they are also fully adaptive
to the uncertainty realization. An example of a multistage scenario tree is shown in Figure 6, where we have 3 different
realizations of the uncertainty parameters for stage two and three, and end upwith 32 = 9 scenarios in total. In stage
two, the decision-maker is only aware of the uncertainties realized at stage two; the parameters in stage three cannot
be realized until the time goes to stage three.

The general multistage stochastic programming formulation is given as follows5:

min c1x1 + Åξ2 [min c2(ω2)x2(ω2) + ... + ÅξH [min cH (ωH )xH (ωH )]...] (7a)

s.t. W1x1 = h1 (7b)

T1(ω2)x1 +W2x2(ω2) = h2(ω) (7c)
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F IGURE 6. Illustration of a scenario tree with 3 stages and 3 realizations per stage

... (7d)

TH−1(ωH )xH−1(ωH−1) +WH xH (ωH ) = hH (ω) (7e)

x1 ∈ X1; xt (ωt ) ∈ Xt , t = 2, ...,H ; (7f)

where we have H stages. The set of scenarios in stage t is represented as ωt . The deterministic equivalent of the
general multistage stochastic programming is then defined as follows5:

min
x∈X1

{c1x1 + Q2(x1) :W1x1 = h1 } (8)
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where the expected value function for stage t + 1 is given by:

Qt+1(xt ) = Åξt+1 [Q t+1(xt , ξt+1(ω))] (9)

for all t to obtain the recursion for t = 2, ...,H − 1,

Q t (xt−1, ξt (ω)) =

{
min

x (ω)∈Xt
ct (ω)xt (ω) + Qt+1(xt ) :Wt xt (ω) = ht (ω) −Tt−1(ω)xt−1

}
(10)

For the terminal condition t = H , we have:

QH (xH−1, ξH (ω)) =

{
min

x (ω)∈XH
cH (ω)xH (ω) :WH xH (ω) = hH (ω) −TH−1(ω)xH−1

}
(11)

Solving multistage stochastic programming problem is computationally challenging since the size of the problem grows
exponentially with the number of stages. One option is to solve problem (7), i.e., the deterministic equivalent problem
with a finite number of scenarios. Decomposition algorithms can also be used to solve multistage stochastic pro-
grams under some assumptions. For example, nested Benders decomposition25 can solve linear multistage stochastic
programming problem. For more details about solution procedures, we refer the readers to the review paper26.
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6 | CASE STUDY

In the case study, we use a data set that has 9 wells in a single wellpad. We assume that none of the operations have
been performed on the wells. All the wells are allowed to be developed at any time in the planning horizon. Each of
the four operations takes one to twoweeks to finish. If all the operations for the 9wells are performed, 41weeks are
needed. Therefore, we assume that the whole planning horizon is slightly over 41weeks in the case studies. The details
of the length of the planning horizon can be found in the subsections below. We assume that a well can be “partially"
completed, which is different from the assumption in the problem statement for the deterministic model in section 3
because when the price becomes low, it can be unprofitable to complete the wells.

To showcase whether using stochastic programming can create value, we apply both two-stage and multistage
stochastic programming to the single pad development problem. In order to come upwith themathematical formulation
of the stochastic programmingmodels, we first need to have a scenario tree that describes the realization of uncertain
parameters. We need to duplicate the decisions in the deterministic model described in Appendix A for each node in the
scenario tree, i.e., different recourse decisions can bemade for each realization of the uncertain parameters. We also
evaluate the impact of the variance of the prices in the scenarios on the optimal solution of the two-stage stochastic
programs. The details can be found in the following subsections.

6.1 | Two-stage stochastic programmingwith high price variance

We investigate price uncertainty by formulating a two-stage stochastic programming problem. The whole planning
horizon is 45 weeks with the decisions of the first 20 weeks corresponding to the first stage decisions and the decisions
of week 21 - week 45 corresponding to the second stage decisions. The scenario tree for this problem is shown in
Figure 7. We assume that the prices are 0.2, 1.5, 2.8 dollars permillion Btu for the three scenarios, which are shown
in red in Figure 7. The probabilities for each scenario are shown in blue in Figure 7, being 0.3, 0.4, 0.3, respectively. It
should be noted that the prices here are lower than the natural gas spot price shown in Figure 4. This is because in
the proposedMILPmodel we do not consider all the costs that are needed to deliver natural gas to the customers, for
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F IGURE 7. The scenario tree for two-stage stochastic programming with high price variance

example, transportation costs are not considered in themodel. Therefore, the natural gas prices should be discounted
in order to correctly characterize whether developing the wells is profitable or not. We also assume that the prices are
constant after the first stage, i.e., the price outside the planning horizon is the same as the price in the second stage of
the stochastic programming problem.

All the problems are solved using CPLEX 12.727 on the 12 processors of an Intel Xeon (2.67GHz) machine with
64GBRAM. Thewalltime limit is set to 12 hours. The computational statistics of the deterministic problem and the
stochastic programming problem including the number of binary and continuous variables, the number of constraints,
walltime, optimality gap, are shown in Table 1. The stochasticmodel cannot be solved to optimality within our time limit.

TABLE 1. Computational statistics of the deterministic and the stochastic model with high price variance
Binary Var Continuous Var Constraints Walltime gap

Deterministic 3655 867 4524 1,112 secs 0.01%
Stochastic 9,963 1,859 12,828 12 hrs 2.41%

To compare the difference between the deterministic model and the stochastic programmingmodel, we first solve
the deterministic model with the price of natural gas fixed at 1.5 dollars per Btu. The Gantt chart for the deterministic
problem is shown in Figure 8. All the 9wells are completed in the deterministic solution. Five wells are turned in line
aroundweek 20. The other four wells are turned in line at the end of the planning horizon.

Thenwe fix the first stage decisions and check how it performs in different scenarios, i.e., the decisions fromweek
1 to week 20 are fixed at the corresponding optimal solution of the deterministic model and we only optimize the
decisions fromweek 21 toweek 45 for the three scenarios, respectively. The Gantt charts for prices equal to 0.2, 1.5,
2.8 dollars per Btu, are shown in Figures 9, 10, and 11, where the first stage decisions are obscured to denote that they
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F IGURE 8.Gantt Chart of the deterministic problem

F IGURE 9.Gantt Chart of the expected value solution for scenario price=0.2

are fixed based on the deterministic model.

In the scenario when the price equals to 0.2 dollar per Btu, the optimal solution only turns in line the twowells that
have not been completed in the first stage. No newwells are developed in stage twowhen the price is low. However, the
scenarios when the price is 1.5 or 2.8 dollars per Btu, all the 9wells are completed within the planning horizon.

The stochastic solutions for the three scenarios are shown in Figures 12, 13, and 14. Compared with the deter-
ministic solution that fractures five wells in the first stage, the stochastic solution only fractures three wells in the first
stage. The stochastic solution tries to wait until the second stage to decide if more wells should be fractured. In the
scenario when the price is 0.2 dollars per Btu, no more wells are fractured in the second stage. When the prices are
greater than or equal to 1.5 dollars per Btu, all the wells are completed in stage 2. Note that twowells are top set at

F IGURE 10.Gantt Chart of the expected value solution for scenario price=1.5
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F IGURE 11.Gantt Chart of the expected value solution for scenario price=2.8

F IGURE 12.Gantt Chart of the stochastic solution for scenario price=0.2

the end of stage 1 so that the wells can be turned in line faster once the operators realize that the price is going up.
Moreover, although the two top set wells are turned in line in the low price scenario, this does not sacrifice the overall
expected NPV significantly since top setting is the cheapest operation among the four operations.

In order to demonstrate the value that stochastic programming can create, we show the NPVs of the expected
solution and the stochastic solution in all the three scenarios in Table 2. While the expected value solution has slightly
larger NPVswhen the prices aremedium or high, it has a highly negative NPVwhen the price is 0.2 dollars per Btu. On
the other hand, the stochastic solution tries to delay development decisions to stage two asmuch as possible and has
higher NPV than the expected value solution in the low price scenario. By taking the expectedNPV, we can calculate
that the value of stochastic solution is 3.50million dollars.

F IGURE 13.Gantt Chart of the stochastic solution for scenario price=1.5
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F IGURE 14.Gantt Chart of the stochastic solution for scenario price=2.8

TABLE 2.NPVs of the expected value and the stochastic solution (million dollars)
Scenario Price NPV(Expected value) NPV(Stochastic Solution)
1 0.2 -24.28 -7.74
2 1.5 71.45 70.86
3 2.8 182.58 178.48

6.2 | Two-stage stochastic programmingwith low price variance

In this subsection, we change the assumption of the scenario tree slightly comparedwith subsection 6.1. The scenario
tree is shown in Figure 15when the price has smaller variance comparedwith the scenario tree in Figure 7. The prices
in the three scenarios are 0.75, 1.5, and 2.25 dollars per Btu.

We solve the same two-stage stochastic programming problemwith week 1 to week 20 as the first stage, and week
21 toweek 45 as the second stage. It turns out that the optimal solutions of the three scenarios are all similar to the
expected value solution shown in Figure 8. Hence, there is no value in solving the stochastic programmingmodel. The
main reason is that in all the three scenarios natural gas is profitable. Therefore, all the wells are completed as in the
deterministic model for all the three scenarios.

F IGURE 15. The scenario tree for two-stage stochastic programming with low price variance
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F IGURE 16. The scenario tree for multistage stochastic programming with high price variance

6.3 | Multistage stochastic programmingwith high price variance

Multistage stochastic programming is a more accurate way to model the single pad development problem since it
considers a sequence of decisions that react to outcomes that evolve over time. We apply multistage stochastic
programming to our single pad development problemwith high price variance. We assume that the whole planning
horizon is 48weeks. The planning horizon is equally divided into three stages. In each stage, the realizations of price can
be 0.2, 1.5, and 2.8 dollars per Btu with probabilities 0.3, 0.4, and 0.3, respectively. The scenario tree for themultistage
problem is shown in Figure 16. We also assume that the prices outside the planning horizon remain equal to the prices
in the third stage.

The stochastic programmingmodel has 31,213 binary variables, 4,153 continuous variables, and 49,801 constraints.
It is solved using CPLEX 12.727 on the 12 processors of an Intel Xeon (2.67GHz) machine with 64 GB RAM for 12
hours. The CPLEX solver can obtain an optimality gap of 3.76% within the time limit. The best expected NPV from
CPLEX is 79.94million dollars. To quantify the value of using stochastic programming, we use the concept of the value
of stochastic solution for multistage stochastic programming from Escudero et al.28. In their definition, the expected
results of using the expected value solution at stage t (EEVt ) is obtained by fixing the first t − 1 stage decisions to the
optimal solution of the expected value problem and solve the rest of the stochastic programming problem. The value of
stochastic solution at stage t (V SSt ) is defined asV SSt = EEVt − RP . For the detailed definition, we refer the readers
to28. In this case, EEV2 = 74.62million dollars, EEV3 = 73.40million dollars,V SS2 = 5.33million dollars,V SS3 = 6.55
million dollars.

In Figures 17 to 20, we show the Gantt charts of some scenarios. In both Figure 17 and Figure 19when the price in
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F IGURE 17.Gantt Chart of the stochastic solution for scenario price=0.2, 0.2, at stage two and three, respectively

F IGURE 18.Gantt Chart of the stochastic solution for scenario price=0.2, 1.5, at stage two and three, respectively

the third stage and outside the planning horizon is only 0.2 dollar per Btu, not all the wells are completed in stage three
because the natural gas price is not high enough tomake the business profitable. On the other hand, when the price
is greater than or equal to 1.5 dollars, it is preferable to complete all the 9wells, which corresponds to the scenarios
shown in Figures 18 and 20. Since the price in the third stage determines whether natural gas is profitable outside the
planning horizon, all the optimal solutions try to delay the decisions to the third stage, i.e., no operation is performed in
the last few days of stage two.

We can also observe that the price in stage two affects the number of wells that are turned in line. When the price
is 0.2 dollar per Btu in stage two, only onewell is turned in line (see Figures 17 and 18). When the price is greater than
or equal to 1.5 dollars per Btu in stage two (see Figures 19 and 20), twowells are turned in line in stage two. Because of
the higher price in stage two in Figures 19 and 20, onemorewell is turned in line to obtain the revenue of natural gas
early in stage two.

The similarity of themultistage and the two-stage stochastic programming solution is that both of them try to delay
the decisions to the last stage so that the uncertainty of the prices are fully realized. Themajor difference is that the
multistage solution allows the uncertainties to evolve every quarter, which is a better approximation of what happens in
practice.
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F IGURE 19.Gantt Chart of the stochastic solution for scenario price=1.5, 0.2, at stage two and three, respectively

F IGURE 20.Gantt Chart of the stochastic solution for scenario price=1.5, 1.5, at stage two and three, respectively

7 | CONCLUSIONS

In this paper, we study the shale gas pad development problem under price uncertainty. The deterministic model is
similar to theMILPmodel proposed byOndeck et al.1 where a wellpad is given with several prospective wells and the
upstream operator needs to determine the sequence of operations on thewellpad. To extend thework of Ondeck et
al.1 , we investigate how price uncertainties can affect the decision-making in this context. Themathematical framework
that we use in this paper is stochastic programming, which is regarded as a risk-neutral approach to hedge against
uncertainty. We introduce some concepts to quantify the value that stochastic programming can create, such as the
value of stochastic solution (VSS).We apply both two-stage andmultistage stochastic programming to the development
of a wellpad with 9 wells under price uncertainty. When the variance of price is high, we can obtain values using
stochastic programming on the order of million dollars. The stochastic solutions in both two-stage andmultistage try
to delay the development decisions to the last stage when the uncertainty of the prices are fully realized. We also
demonstrate that multistage stochastic programming is a better approximation of what happens in the real world than
two-stage stochastic programming since it allows the uncertainties to evolve every quarterly.

However, when the price variance is low, there is no value of using stochastic programming since all the scenarios
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have the same recourse decisions. This gives us some insights onwhen to use stochastic programming. Theremay not be
any value of using stochastic programming even if there are uncertain parameters in themodel. Stochastic programming
can only add value if there is something that we can do differently than the deterministic solution.

It should be noted that the generation of scenario trees can be improved by usingmore realistic forecast models.
The aim of using the high and low variance scenarios trees is to evaluate the stochastic programming approach. We
will leave the incorporation and better forecast models and expert knowledge in building the scenario as one future
direction.

Furthermore, future work can also concentrate on extending themodel tomultiple pads development problem,
and considering themobilization of crew and equipment between thewellpads. We expect the optimization problem
to grow even larger once more wellpads are taken into account. Therefore, better solution techniques need to be
developed to solve the large-scale stochastic programming problemwith higher efficiency.
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APPEND IX A: MATHEMAT ICAL FORMULAT ION FOR THE DETERMIN I ST IC MODEL

Nomenclature
Sets
t ∈ T = Time points in the scheduling horizon
w ∈W =Wells
u ∈ U =well operation periods
o ∈ O =operations {T S ,H Z , F RAC ,T I L}
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a ∈ A =well age
Parameters
NRIw= NRI of wellw
φt=Discounted rate time period for time period t
ADR =Annual discount rate, which is assumed to be 10%
lw=Lateral length of wellw
P NPVt ,w =NPV of a wellw where t is the starting week ofT I L
πt=Natural gas price forecast for period t
T̂ = Total number of time periods used to generate revenue
γa,w=Gas production forecast per foot for wellw of age a
t devw ,o =Development time for operation o at wellw
t st ar tw ,o =Earliest start time for operation o at wellw
Stor emax =Maximum capacity of storage
Pmaxt =Maximum capacity of gas that can be produced for time period t
Mobo=Mobilization cost for operation o
WOCw ,o=Operation cost for operation o at wellw
Tpl anni ng=Total number of time periods used for planning horizon
pDi scP r oRev outw ,t =Discounted revenue per ft for well outside planning horizon if well is turned in line at time t
Pmaxt =Maximum capacity of gas that can be produced for time period t
Binary Variables
s i nt = If gas is being put into storage at time period t
y st ar tt ,w ,o = If operation o starts in time period t at wellw
z act iv et ,w ,o =If operation o is active during time period t at wellw
Continuous Variables
NPV =Net present value
Di sc .Rev=Discounted revenue
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Di sc .MC=Discountedmobilization cost
Di sc .OC=Discounted operation cost
Di sc .Rev i nt =Discounted revenue inside the scheduling horizon for time period t
Di sc .Rev outw =Discounted revenue outside the scheduling horizon for wellw
MCO t ,p,o=Mobilization cost for time period t at pad p for operation o
Pt ,w=Amount of gas produced at wellw during time period t
St or eoutt = Amount of gas out of storage during time period t
Stor e i nt = Amount of gas put into storage during time period t
Stor eLevel t = Storage level during time period t

Parameter Calculations The parameter pDi scP r odRevOut si dew ,t is calculated prior to optimizing. The parame-
ter represents the revenue per foot outside the planning horizon if a wellw is turned in line at time period t. To calculate
the parameter, we need to sum over the time outside the planning horizon (a + t > T ) while the summation is within the
time horizon that revenues are considered (a + t < T̂ ). Each term in the summation represents the discount rateφa+t
times the gas price πa+t times the production γa,w when this well is at age a .

pDi scP r odRevOut si dew ,t =
∑

a :{T <a+t<T̂ }

(
φa+t · πa+t · γa,w

)
[t ∈ T ,w ∈W (12)

The parameter t st ar tw ,o , the earliest time to start operation o at wellw , is calculated as,

t st ar tw ,o = 1 +
∑

o′≤o−1

t devw ,o′ [o ∈ O ,w ∈W (13)
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Operation o cannot start on wellw until all its previous operations have been completed on wellw . We assume that the
time index starts from 1. Therefore, we need to plus one on the right hand side of (13).

7.1 | Constraints

Weoutline the constraints used in themodel. We show different types of reformations for some of the constraints.

General Constraints

Single Operation PerWell: At most one operation can start at each time period t for each wellw,

∑
o∈O

y st ar tt ,w ,o ≤ 1 [w ∈W , t ∈ T (14)

Operation Done at Most Once: Each operation can only be performed at most once for each well throughout the
planning horizon.

∑
t∈T

y st ar tt ,w ,o ≤ 1 [w ∈W , o ∈ O (15)

Earliest Start Time: Operation o cannot start before its earliest start time defined in (13).

y st ar tt ,w ,o = 0 [t ∈ T ,w ∈W , o ∈ O , t < t st ar tw ,o (16)

SequencingOperations (ordering): Operation o cannot start until operation o-1 is complete. Since each operation can
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be performed at most once in the entire planning horizon, the time that operation o starts, represented by the left hand
side of (17), must be greater than or equal to the time that operation o − 1 starts plus the development time of operation
o − 1, which is represented by the right hand side of (17).

∑
t∈T

(
t · y st ar tt ,w ,o

)
≥

∑
t∈T

( [
t + t devw ,o−1

]
· y st ar tt ,w ,o−1

)
[w ∈W , o ∈ O , o > 1 (17)

SequencingOperations (ordering) r1:An alternative way tomodel this constraint could be using equation (18). Here
variable y st ar tt ,w ,o is forced to zero if operation o − 1 has not been completed at time t .

y st ar tt ,w ,o ≤
∑

t ′≤t−t dev
w ,o−1

y st ar tt ′,w ,o−1 [t ∈ T ,w ∈W , o ∈ O , o > 1, t ≥ t st ar tw ,o (18)

However, this reformulation performsworse than equation (17). Therefore, equation (17) is used in the case study.

SequencingOperations (tightening constraint): Operation o cannot happen before operation o − 1, nor can opera-
tion o − 1 happen after operation o ,

∑
t
′
≤t

y st ar t
t
′
,w ,o

+
∑
t
′
≥t

y st ar t
t
′
,w ,o−1

≤ 1 [w ∈W , t ∈ T , o ∈ O , o > 1 (19)

Operations Completion: Equation (20) forces that the operations on well wmust be completed in the planning
horizon if the first operation starts in the planning horizon, i.e, no well can be left unfinished within the planning horizon.
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∑
t∈T

y st ar tt ,w ,o =
∑
t∈T

y st ar tt ,w ,o−1 [w ∈W , o ∈ O , o > 1, t ≥ t st ar tw ,o (20)

Single Operation Per Time Period Per Pad: At most one operation can be active at each time period t in the
wellpad,

∑
w∈W

∑
o∈O

z act iv et ,w ,o ≤ 1 [t ∈ T (21)

where z act iv et ,w ,o is a binary variable that decides whether operation o is performed onwellw at time t ,

z act iv et ,w ,o =
∑

t
′ :{t ′≤t , t−t devw ,o <t

′
}

y st ar t
t
′
,w ,o

[t ∈ T ,w ∈W , o ∈ O (22)

Base Production

The following equation gives production for wellw at time t . If wellw is turned in line at time t − a , the age of the
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well at time t is a . The production can be calculated based on the production curve.

Pt ,w =
∑

a :{a<t }
y st ar tt−a,w ,T I L · γa,w · lw [t ∈ T ,w ∈W (23)

Mobilization Constraints

Cost of Mobilization: If operation o is not active at time t − 1 but is active at time o , we need to move the corre-
sponding equipment and crew for operation o to the wellpad at time t and amobilization cost is incurred.

MCO t ,p,o ≥ Mobo ·

( ∑
w∈W

(
z act iv et ,w ,o

)
−

∑
w∈W

(
z act iv et−1,w ,o

))
[t ∈ T , p ∈ P , o ∈ O (24)

Since themobilization constraints make the problem hard to solve, we propose several reformulations to account for
themobilization costs.

Cost of Mobilization r1: We define new binary variables z changet ,o which decide whether the wellpad change to
perform operation o from a different operation o′ , o at time t or not. Similar to (24), variable z changet ,o can be calculated
by,

z
change
t ,o ≥

∑
w∈W

(
z act iv et ,w ,o

)
−

∑
w∈W

(
z act iv et−1,w ,o

)
(25)
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Themobilization cost at time t can be calculated by summing over the potential operations change at time t .

MCO t ,p,o =
∑
o∈O

Mobo z
change
t ,o (26)

Since theoptimizationmodel always try tominimize the costs, variables z changet ,o always equal to zero if the corresponding
operation is not changed at time t .

Cost of Mobilization r2: Mobilization cost occurs if we start operation o at time t at any wellw and there is no
operation o ends at time t .

MCO t ,p,o ≥ Mobo ·

( ∑
w∈W

(
y st ar tt ,w ,o

)
−

∑
w∈W

(
y st ar t
t−t devw ,o ,w ,o

))
[t ∈ T , p ∈ P , o ∈ O (27)

We did computational experiments with CPLEX on all the three formulations for mobilization. Formulation cost of
mobilization r1 performs best whenwe give high branching priority to z changet ,o .

Capacity Constraint: For every time period t, the production plus the gas released out of storage minus the gas
curtailed in the storagemust be less than or equal to themaximum gas that can be produced at time t . Note that the
virtual storage is considered for the whole wellpad. We do not distinguish the storage for each well.

( ∑
w∈W

Pt ,w

)
+ Stor eoutt − Stor e i nt ≤ P

max
t [t ∈ T (28)

NoStorage In/Out: If storage is being loaded, no gas can be released from storage. If the storage is not being loaded,
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we constrain the amount of gas released to be less than themaximum (based on number of wellsW).

(
1 − s i nt

)
·W · Stor emax ≥ Stor eoutt [t ∈ T (29)

Storage In Used: Maximum amount of gas put into storage, based on number of wells and if storage is allowed

s i nt ·W · Stor e
max ≥ Stor e i nt [t ∈ T (30)

Storage Level: For all periods greater than 1, the storage level at time t is equal to the storage level at time t-1 plus
any gas added to storage at time t,minus any gas removed from storage at time t

Stor eLevel t = Stor eLevel t−1 + Stor e
i n
t − Stor e

out
t [t ∈ T , t > 1 (31)

Initial Storage Level: At initial time period (t = 1), the storage level is equal to any gas added to storageminus any
gas removed from storage

Stor eLevel1 = Stor e
i n
1 − Stor e

out
1 (32)
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Revenues

The discounted revenue inside the scheduling horizon at time t (Di sc .Rev i nt )with capacity constraints is,

Di sc .Rev i nt = φt · πt ·

(∑
w

(
Pt ,w · NRIw

)
+ NRI

(
Stor eoutt − Stor e i nt

))
[t ∈ T (33)

where we sum over the sales of gas production at each wellw plus the revenue from the gas storage.

The discounted revenue outside the scheduling horizon (Di sc .Rev outw ) is:

Di sc .Rev outw = NRIw · lw
∑
t

pDi scP r odRevOut si dew ,t y
st ar t
t ,w ,T I L [w ∈W (34)

where parameter pDi scP r odRevOut si dew ,t has been precalculated in equation (12). It calculates the revenuewellw
can generate outside the planning horizon if it is turned in line at time t .

The discounted revenue for gas left in fictional storage (Disc. Revleft) is calculated with equation (35). There can
be some gas left in the storage at the end of the planning horizon. We assume that the sales of the left gas is evenly
distributed outside the planning horizon, i.e., from timeT to T̂ .

Di sc .Rev l ef t =
∑

u :{T <u<T̂ }

(
φu · πu · ¯NRI ·

Stor eLevelT(
T̂ −T

) )
(35)

The discounted revenue (Disc. Rev) is equal to the summation of the three types of revenues described above,
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Di sc .Rev =
∑
t

Di sc .Rev i nt +
∑
w

Di sc .Rev outw + Di sc .Rev l ef t (36)

Costs

The discounted operating cost (Disc. OC) is calculated by the following:

Di sc .OC =
∑
t

φt ·
∑
o

∑
w

(
y st ar tt ,w ,o ·WOCw ,o

)
(37)

The discountedmobilization cost (Disc. MC), calculated based on themobilization costs (MCOt,p,o)

Di sc .MC =
∑
t

φt ·
∑
p

∑
o

MCO t ,p,o (38)
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Objective

Maximizing NPV

NPV = Di sc .Rev − Di sc .OC − Di sc .MC (39)
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