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Abstract

This paper addresses the design and planning of manufacturing networks considering the option

of centralized and distributed facilities, taking into account the potential trade-offs between in-

vestments and transportation. The problem is formulated as an extension of the Capacitated

Multi-facility Weber Problem, which involves the selection of which facilities to build in each time

period, and their location in the continuous two-dimensional space, in order to meet demand and

minimize costs. The model is a multi-period GDP, reformulated as a nonconvex MINLP. We

propose an accelerated version of the Bilevel Decomposition by Lara et al. [1] that finds stronger

bounds in the decomposition scheme. We benchmark the performance of our algorithm against

the original Bilevel Decomposition and commercial global solvers and show that our approach

outperforms the others in all instances tested. Additionally, we illustrate the applicability of the

proposed model and solution framework with a biomass supply chain case study.

Keywords: Distributed manufacturing, Weber problem, Global optimization

1. Introduction1

Advances in technology have led to the rethinking of traditional manufacturing. In the past2

few decades, public and private initiatives have been sponsoring research on smaller-scale and3

cleaner manufacturing processes. The F3 Factory Project was launched in 2009 to enhance the4

competitiveness of the European chemical industry by promoting modular continuous plants with5

small and medium scale production [2]. Likewise, the U.S. Advanced Manufacturing National6

Program Office (AMNPO) has brought together corporations, federal agencies, and universities to7

advance manufacturing technologies by investing in areas such as High Efficiency Modular Chem-8

ical Processes (HEMCP), Additive Manufacturing (3D printing), and Process Intensification [3].9

Modular plants consist of manufacturing sites with their major equipment pieces in standard-10

Preprint submitted to Computers and Chemical Engineering April 19, 2021



ized modules instead of having customized site-specific design [4]. Their potential advantages11

include higher flexibility, faster time-to-market, and improved safety [5, 6, 7]. This concept is not12

new [8], but combined with distributed manufacturing and the recent advances in process intensifi-13

cation [9, 10], it can be a viable and beneficial alternative to traditional large-scale manufacturing.14

The concept of Distributed Manufacturing - a geographically distributed network of facilities15

- has arisen as a promising option for supply-chain networks in which the transportation costs16

and infrastructure are the main bottlenecks (e.g., biomass [11, 12, 13], shale gas [14, 15], and17

electric power). However, despite the potential advantages of having distributed facilities, conven-18

tional large-scale centralized manufacturing can be more cost-effective due to economies of scale.19

Therefore, there is a need for a general optimization framework that can support the selection of20

centralized and distributed facilities taking into account the potential trade-offs [16].21

We address the design and planning of manufacturing networks considering the selection and22

location of centralized and/or distributed facilities. This multi-period problem involves the selec-23

tion of which facilities to build in each time period, their location in the continuous 2-dimensional24

space, and how to link them with suppliers and customers, in order to meet demand and to25

minimize costs. The problem is formulated as a version of the continuous facility location and26

allocation problem with limited capacity, also known as the Capacitated Multi-facility Weber27

Problem (CMWP) [17].28

The original Weber problem was proposed by Alfred Weber [18], a pioneer of the modern29

location theories. In his original problem, he considered one facility to be located based on two30

suppliers and one customer, when these three points are not collinear [18, 19], and assuming31

Euclidean distances.32

The capacitated version of the Weber problem (CMWP) was first proposed by Cooper [20],33

and assumes a maximum capacity for the facilities to be installed. This class of problems has been34

proved to be NP-hard even if all the fixed points are located on a straight line [21]. Copper proposes35

a rigorous solution method to the CMWP that relies on explicit enumeration of the extreme points36

of the transportation polytope, thus limiting its application to small problems. He also proposes37

a heuristic approach, known as the Alternating Transportation-Location (ATL) method, which38

alternates the solution of the transportation and allocation problems until convergence is achieved,39

although there is no guarantee of global optimality. The ATL heuristic is further developed40

in [22, 23].41
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Sherali and co-authors propose in 1977 a cutting plane algorithm for the rectilinear distance42

location-allocation problem [24], and in 1992 they introduce a branch-and-bound algorithm for the43

squared-Euclidean distance location-allocation problem [25]. They also propose in 2002 a branch-44

and-bound algorithm based on the partitioning of the allocation space that finitely converges to45

a global optimum within a given tolerance [26]. Chen, Pan, Ko [27] reformulate the CMWP as a46

sequence of nonlinear second-order cone problems, and apply the semi-smooth Newton method to47

solve it. Akyüz et al. [28] propose two branch-and-bound algorithms for solving exactly the multi-48

commodity CMWP: one based on partitioning the allocation space, and the other one considers49

partitioning of the location space. Besides exact methods, there are several heuristics developed50

for this class of problem [17, 29, 30, 31, 32, 33, 34].51

In this paper, we extend the work by Lara et al. [1] (in which the single-period design problem52

for a general manufacturing network with multiple facility types is addressed) to solve the design53

and multi-period planning of centralized and distributed manufacturing networks. The model54

proposed in this paper is a multi-period nonlinear Generalized Disjunctive Programming (GDP),55

reformulated as a multi-period nonconvex Mixed-Integer Nonlinear Programming (MINLP). Due56

to the extra layer of complexity added by the multi-period formulation, we propose an accelerated57

version of the algorithm proposed by Lara et al. [1] to improve its computational performance58

and scalability. Accordingly, the contributions of this work are on the formulation (multi-period),59

application (centralized and distributed networks), and solution method (extension of the Bilevel60

Decomposition algorithm).61

The remainder of the paper is organized as follows. We begin by presenting in Section 2 the62

problem statement. Section 3 includes the General Disjunctive Programming (GDP) formulation63

and its reformulation as a nonconvex MINLP. In Section 4 we propose an accelerated version of the64

global optimization algorithm by [1], which is guaranteed to have ε-convergence. The additional65

steps consist of a strategy for reducing the optimization search space by reducing sets of potential66

facilities and their two-dimensional feasible region, as well as providing an initial solution to the67

Master Problem. We illustrate the method for a test problem in the same section. In Section 5 we68

benchmark the performance of the accelerated algorithm against the original and the commercial69

global solvers available for the set of randomly generated instances from [1] extended to multi-70

period problems. Finally, in Section 6 we apply the formulation and solution strategy to a biomass71

supply chain case study, and in Section 7 we draw the conclusions.72
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2. Problem Statement73

Given is a set of suppliers i ∈ I, with their respective fixed location coordinates (Xi, Yi),74

availability AVi,t, and cost of material supply CRMi,t at each time period t ∈ T . Given is also75

a set of customers j ∈ J , with their respective fixed locations (Xj, Yj), and demands DMj,t per76

time period t. Given are the fixed and variable investment costs (FICk,t and V ICk,t, respectively)77

and variable operating costs (V OCk,t) of potential facilities k ∈ K with N different types (i.e.78

centralized and distributed N = 2), which are partitioned into subsets Kn ∀ n ∈ N = {1, ..., N}79

such that
⋃

n∈N Kn = K and Knl
∩ Knm = ∅ ∀nl, nm ∈ N , l 6= m. The corresponding maximum80

capacity, MCk, and conversion to product flows, CVk, of these potential facilities are also known.81

Given are also the transportation costs between suppliers and facilities, and facilities and markets82

(FTCs
i,k, FTC

c
k,j: fixed costs; V TCs

i,k, V TC
c
k,j: variable costs). The problem is to find the opti-83

mal network of facilities (number, types, location, when to build, and corresponding flows) that84

minimizes the total cost.85

The variables in the problem are the coordinates of potential facilities, (xk, yk), the distances86

between supplier and facility, dsi,k, and between facility and customer, dck,j, the flows between87

supplier and facility, ff s
i,k,t, and between facility and customer, ff c

k,j,t, and the amount produced88

by each facility, fk,t, in each time period t. There are also Boolean variables: Bk,t (true if facility89

is built in time period t; false otherwise); Wk,t (true if facility is in operation in time period t; false90

otherwise); Zs
i,k,t (true if material supply is transported between supplier and facility during time91

period t; false otherwise); and Zc
k,j,t (true if product is transported between facility and customer92

during time period t; false otherwise).93

3. Model Formulation94

3.1. Generalized Disjunctive Programming (GDP)95

We first formulate the problem as Generalized Disjunctive Programming (GDP) to take ad-96

vantage of the disjunctive structure of some of the decisions. Extending [1], the GDP formulation97

is given by Equations (1a)-(1t).98

min Φ =
∑
t∈T

1

(1 + R)t
·
∑
k∈K

invk,t + opk,t +
∑
i∈I

costsi,k,t +
∑
j∈J

costck,j,t

 (1a)

4



s.t.

 Bk,t

invk,t = FICk,t + V ICk,t ·MCk

 ∨
 ¬Bk,t

invk,t = 0

 ∀ k ∈ K, t ∈ T (1b)


Wk,t

opk,t = V OCk,t · fk,t
0 ≤ fk,t ≤MCk

 ∨

¬Wk,t

opk,t = 0

fk,t = 0

 ∀ k ∈ K, t ∈ T (1c)


Zs
i,k,t

costsi,k,t = CSi,t · ff s
i,k,t + FTCs

i,k + V TCs
i,k · ff

s
i,k,t · d

s
i,k

0 ≤ ff s
i,k,t ≤ FF s

i,k,t

 ∨


¬Zs
i,k,t

costsi,k,t = 0

ff s
i,k,t = 0

 ∀ i ∈ I, k ∈ K, t ∈ T (1d)


Zc
k,j,t

costck,j,t = FTCc
k,j + V TCc

k,j · ff
c
k,j,t · d

c
k,j

0 ≤ ffc
k,j,t ≤ FF c

k,j,t

 ∨


¬Zc
k,j,t

costck,j,t = 0

ffc
k,j,t = 0

 ∀ k ∈ K, j ∈ J , t ∈ T (1e)


∨

t∈T Bk,t

0 ≤ xk ≤ Xk

0 ≤ yk ≤ Yk

 ∨

¬
∨

t∈T Bk,t

xk = 0

yk = 0

 ∀ k ∈ K (1f)

dsi,k ≥
√

(Xi − xk)2 + (Yi − yk)2 ∀ i ∈ I, k ∈ K (1g)

dck,j ≥
√

(Xj − xk)2 + (Yj − yk)2 ∀ k ∈ K, j ∈ J (1h)

Wk,t ⇐⇒
∨
i∈I

Zs
i,k,t ∀ k ∈ K, t ∈ T (1i)

Wk,t ⇐⇒
∨
j∈J

Zc
k,j,t ∀ k ∈ K, t ∈ T (1j)

Wk,t ⇐⇒ Wk,t−1 ∨Bk,t ∀ k ∈ K (1k)∑
k∈K

fsi,k,t ≤ AVi,t ∀ i ∈ I, t ∈ T (1l)

∑
i∈I

fsi,k,t · CVk = fk,t ∀ k ∈ K, t ∈ T (1m)

fk,t =
∑
j∈J

fck,j,t ∀ k ∈ K, t ∈ T (1n)

∑
k∈K

fck,j,t = DMj,t ∀ j ∈ J , t ∈ T (1o)

wk ≥ wk+1 ∀ k ∈ Kn, n ∈ N (1p)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (1q)

Dmin ≤ dsi,k ≤ Dmax ∀ k ∈ K (1r)

Dmin ≤ dck,j ≤ Dmax ∀ k ∈ K (1s)

Bk,t,Wk,t, Z
s
i,k,t, Z

c
k,j,t ∈ {True, False} ∀ i ∈ I, k ∈ K, j ∈ J , t ∈ T . (1t)

The objective function (1a) is the net present cost, which includes investment and operating99

costs for building and operating the facilities, and transportation cost from the suppliers and to100

the customers with an interest rate, R. This is different than the GDP proposed by [1] as it now101

includes a series of cash flows occurring at each time period, and the facility costs are divided into102

investment and operating costs.103

Disjunction (1b) determines whether facility k is built at time t (Bk,t), and disjunction (1c)104

determines whether facility k is in operation at time t (Wk,t). These disjunctions indirectly address105

5



the choice between centralized and distributed facilities as each of the potential facilities have a106

specified type (i.e. distributed or centralized) and their characteristics and costs are drawn from107

their type. This differs from the formulation by [1] where multiple types are allowed instead of108

only two.109

Disjunctions (1d) and (1e) decide if there is material flow between the transportation links110

{i, k} and {k, j} at each time period t, which is determined by the corresponding Boolean variables111

(Zs
i,k,t, Z

c
k,j,t). The last disjunction, (1f), specifies that if a facility k is built at any point within112

the planning horizon, its coordinates should be within the appropriate bounds. However, if this113

facility is not built, then its coordinates should be set to (0, 0), to avoid degeneracy in the solution.114

These five proposed disjunctions, (1b)-(1f), are similar to the disjunctions in the GDP model by115

[1], but have the additional flexibility of allowing different allocations by time-period, specifying116

in which time period a facility is built, and only accounting for operating costs in the time periods117

the facility is in operation.118

Constraints (1g) and (1h) represent the Euclidean distances between suppliers and facilities,119

and facilities and customers, which is the same distance representation used by [1]. The logic120

relations in (1i), (1j) and (1i) establish the existence of links depending on the choice of the facilities121

and vice-versa, and specify that a facility k can only operate (Wk,t) if it has been built before (Bk,t).122

Constraints (1l)-(1o) define the mass balances, as well as the availability and demands, same as123

in [1].124

We assume that the facilities of the same type have the same costs and characteristics associated125

with them, i.e., FICk,t, V ICk,t, V OCk,t, FTCi,k,t, V TCi,k,t, FTCk,j,t, V TCk,j,t, MCk, and CVk are126

the same ∀ k ∈ Kn. Analogously to [1], we have constraints (1p)-(1q) to break the symmetry in127

the facility selection within the same type and avoid degeneracy in the solution. These constraints128

enforce that for facilities k of the same type, i.e., k ∈ Kn, n ∈ N , the model will chose first to129

build the ones with the lower indices, and those will be located in lower xk coordinate. Finally,130

constraints (1r)-(1s) determine the bounds for the distances, Dmin and Dmax, and (1t) defined the131

Boolean variables.132

The GDP model (1) is nonconvex due to the bilinear terms (ff · d) in the transportation cost,133

as can be seen in disjunctions (1d)-(1e). There is a large body of literature on relaxations and134

reformulations of bilinear terms, most of them deriving from the McCormick envelope [35]: e.g.135

[36, 37, 38, 39, 40]. The presence of bilinear terms, which can give rise to local minima, is the136
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main motivation behind choosing a GDP formulation. By having the bilinear terms as part of the137

disjunctions, they are calculated only for the selected connections within an iterative procedure.138

Therefore, for a fixed choice of the Boolean variables, the GDP leads to a reduction in the number139

of bilinear terms and generates a more favorable structure that can be exploited in a decomposition140

scheme. Additionally, equations (1g)- (1h) are nonlinear convex constraints since they correspond141

to Euclidean norms [41].142

3.2. Mixed-integer nonlinear Programming (MINLP) model143

The GDP can be transformed into an MINLP using the hull reformulation, which yields the144

tightest relaxation for each disjunction [42]. Since the disaggregated variables can be reformulated145

back to the original variables, the resulting MINLP is given by Equations (2a)-(2x). Again, the146

main difference between the MINLP reformulation presented in [1] and the following MINLP is the147

added flexibility of allowing multi-period operating and allocation decisions, as well as accounting148

for operating costs by time-period.149

min Φ =
∑
t∈T

1

(1 + R)t
·
∑
k∈K

invk,t + opk,t +
∑
i∈I

costsi,k,t +
∑
j∈J

costck,j,t

 (2a)

s.t invk,t = (FICk,t + V ICk,t ·MCk) · bk,t ∀ k ∈ K, t ∈ T (2b)

opk,t = V OCk,t · fk,t ∀ k ∈ K, t ∈ T (2c)

costsi,k,t = CSi,t · fsi,k,t + FTCs
i,k · zsi,k,t + V TCs

i,k · ff s
i,k,t · dsi,k ∀ i ∈ I, k ∈ K, t ∈ T (2d)

costck,j,t = FTCc
k,j · zck,j,t + V TCc

k,j · ff c
k,j,t · dck,j ∀ k ∈ K, j ∈ J , t ∈ T (2e)

dsi,k ≥
√

(Xi − xk)2 + (Yi − yk)2 ∀ i ∈ I, k ∈ K (2f)

dck,j ≥
√

(Xj − xk)2 + (Yj − yk)2 ∀ k ∈ K, j ∈ K (2g)∑
k∈K

ff s
i,k,t ≤ AVi,t ∀ i ∈ I, t ∈ T (2h)

∑
i∈I

ff s
i,k,t · CVk = fk,t ∀ k ∈ K, t ∈ T (2i)

fk,t =
∑
j∈J

ff c
k,j,t ∀ k ∈ K, t ∈ T (2j)

∑
k∈K

ff c
k,j,t = DMj,t ∀ j ∈ J , t ∈ T (2k)

wk,t =
∑
i∈I

zsi,k,t ∀ k ∈ K, t ∈ T (2l)

wk,t =
∑
j∈J

zck,j,t ∀ k ∈ K, t ∈ T (2m)
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wk,t = wk,t−1 + bk,t ∀ k ∈ K, t ∈ T (2n)

0 ≤ fk,t ≤MCk · wk,t ∀ k ∈ K, t ∈ T (2o)

0 ≤ ff s
i,k,t ≤ FF s

i,k,t · z
s
i,k,t ∀ i ∈ I, k ∈ K, t ∈ T (2p)

0 ≤ ff c
k,j,t ≤ FF c

k,j,t · z
c
k,j,t ∀ k ∈ K, j ∈ J , t ∈ T (2q)

0 ≤ xk ≤ Xk ·
∑
t∈T

bk,t ∀ k ∈ K (2r)

0 ≤ yk ≤ Yk ·
∑
t∈T

bk,t ∀ k ∈ K (2s)

wk,t ≥ wk+1,t ∀ k ∈ Kn, n ∈ N , t ∈ T (2t)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (2u)

Dmin ≤ dsi,k ≤ Dmax ∀ i ∈ I, k ∈ K (2v)

Dmin ≤ dck,j ≤ Dmax ∀ k ∈ K, j ∈ J (2w)

bk,t, wk,t, z
s
i,k,t, z

c
k,j,t ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J , t ∈ T . (2x)

The MINLP model (2) can be more concisely represented by (3).150

Φ = min g(f, ff, z) + dᵀCff (3a)

s.t. dl,k ≥
√

(Xl − xk)2 + (Yl − yk)2 ∀l ∈ I ∪ J , k ∈ K (3b)

f, ff, z, d, x, y ∈ Ω, (3c)

where ff is the vector of all flows between suppliers and facilities, ff s
i,k,t, and between facilities151

and customers, ff c
k,j,t; f is the vector of all facilities’ productions at each time period, fk,t; z is152

the vector of all discrete decision variables (bk,t, wk,t, z
s
i,k,t, and zck,j,t); and g(f, ff, z) is the cost153

function associated with these decision variables. Additionally, d is the vector of distances, C is154

the matrix of variable transportation costs (V TCs
i,k and V TCc

k,j), and (dᵀCff) is the bilinear term155

associated with the variable transportation cost. Constraint (3b) represents both constraints (1g)156

and (1h), and the feasible region Ω is given by (2h)-(2x).157

4. Accelerated Bilevel Decomposition Algorithm158

As shown by [1], global optimization solvers do not perform well for mid to large instances of159

the single-period version of this problem. Thus, it is expected that with the added complexity of160

having multi-period decisions their performance will degrade even further. Lara et al. [1] propose a161

Bilevel Decomposition algorithm that consists of decomposing the problem into a master problem162
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and a subproblem, for which ε-convergence can be proved. The master problem is based on a163

relaxation of the nonconvex MINLP, which yields an MILP that predicts the selection of facilities164

and their links to suppliers and customers, as well as a lower bound on the cost of the original165

problem. The subproblem corresponds to a nonconvex NLP of reduced dimensionality that results166

from fixing the binary variables in the MINLP problem, according to the binary variables predicted167

in the MILP master problem.168

In this paper, we propose an accelerated version of the algorithm proposed by [1] that keeps its169

rigor (i.e., its ε-convergence), but has some additional steps to improve its performance to allow170

the solution of large-scale multi-period instances of this problem within a reasonable amount of171

time. The additional steps consist of an attempt of reducing the optimization search space such172

that it is easier for the Bilevel Decomposition to find good bounds and the optimal solution. These173

steps consist of: i) possibly reducing the set of potential facilities by performing branch-and-bound174

on the facilities that were not selected; ii) potentially reducing the feasible two-dimensional space175

by performing a branch-and-bound on the partitions that did not have any facility being built on;176

iii) giving an initial feasible solution to the Master Problem based on the solution of the previous177

iteration.178

The main steps in the Accelerated Bilevel Decomposition are shown in Figure 1.179

Figure 1: Accelerated Bilevel Decomposition concise representation

We start by explaining the basic steps of the original algorithm by Lara et al. [1] applied to180

the current MINLP formulation (2), and then cover the proposed additional steps to improve its181

performance.182
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4.1. Master Problem183

The nonlinearity and nonconvexity of the formulation come from the fact that the location of

the potential facilities is a decision variable. The master problem takes advantage of this property

and partitions the space into uniform rectangular sub-regions. By having a grid to represent the

feasible area, we can pre-compute the minimum distance between the fixed points (suppliers and

customers) and use them as parameters in the model [1]. The minimum distances between the

fixed points and the sub-regions p, D̂i,p and D̂j,p, are computed as follows:

dxi,p = max{|Xi − xp| −∆x/2, 0} ∀ i ∈ I, p ∈ P (4a)

dyi,p = max{|Yi − yp| −∆y/2, 0} ∀ i ∈ I, p ∈ P (4b)

dxj,p = max{|Xj − xp| −∆x/2, 0} ∀ j ∈ J , p ∈ P (4c)

dyj,p = max{|Yj − yp| −∆y/2, 0} ∀ j ∈ J , p ∈ P (4d)

D̂i,p = max{
√
dx2i,p + dy2i,p, D

min} ∀ i ∈ I, p ∈ P (4e)

D̂j,p = max{
√
dx2j,p + dy2j,p, D

min} ∀ j ∈ J , p ∈ P , (4f)

where (xp, yp) are the coordinates of the mid-point of each sub-region p; ∆x and ∆y are the length184

of sub-region p in the x and y directions, respectively; Dmin is the lower bound for the distances,185

not allowing the model to choose to build a facility k on top of a fixed point from a supplier or a186

customer [1].187

By using the minimum distance parameters, the MINLP formulation (2) can be reformulated188

as a mixed-integer linear programming (MILP) model (5), which yields a lower bound to the189

solution of the original models (1) and (2), as proved in Proposition 1 of [1].190

min Φ =
∑
t∈T

1

(1 + R)t
·
∑
k∈K

∑
p∈P

invk,p,t + opk,p,t +
∑
i∈I

costsi,k,p,t +
∑
j∈J

costck,j,p,t

 (5a)

s.t invk,p,t = (FICk,t + V ICk,t ·MCk) · bk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5b)

opk,p,t = V OCk,t · fk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5c)

costsi,k,p,t = CSi,t · ff s
i,k,p,t + FTCs

i,k · z
s
i,k,p,t + V TCs

i,k · D̂
s
i,p · ff s

i,k,p,t ∀ i ∈ I, k ∈ K, p ∈ P, t ∈ T (5d)

costck,j,p,t = FTCc
k,j · z

c
k,j,p,t + V TCc

k,j · D̂
c
j,p · ffc

k,j,p,t ∀ k ∈ K, j ∈ J , p ∈ P, t ∈ T (5e)∑
k∈K

∑
p∈P

ff s
i,k,p,t ≤ AVi,t ∀ i ∈ I, t ∈ T (5f)

∑
i∈I

ff s
i,k,p,t · CVk = fk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5g)

fk,p,t =
∑
j∈J

ffc
k,j,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5h)
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∑
k∈K

∑
p∈P

ffc
k,j,p,t = DMj,t ∀ j ∈ J , t ∈ T (5i)

wk,p,t =
∑
i∈I

zsi,k,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5j)

wk,p,t =
∑
j∈J

zck,j,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5k)

wk,p,t = wk,p,t−1 + bk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5l)∑
p∈P

wk,p,t ≤ 1 ∀ k ∈ K, t ∈ T (5m)

∑
p∈P

bk,p,t ≤ 1 ∀ k ∈ K, t ∈ T (5n)

∑
p∈P

zsi,k,p,t ≤ 1 ∀ k ∈ K, t ∈ T (5o)

∑
p∈P

zck,j,p,t ≤ 1 ∀ k ∈ K, t ∈ T (5p)

0 ≤ fk,p,t ≤MCk · wk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (5q)

0 ≤ ff s
i,k,p,t ≤ FF s

i,k,t · z
s
i,k,p,t ∀ i ∈ I, k ∈ K, p ∈ P, t ∈ T (5r)

0 ≤ ffc
k,j,p,t ≤ FF c

k,j · z
c
k,j,p,t ∀ k ∈ K, j ∈ J , p ∈ P, t ∈ T (5s)∑

p

wk,p,t ≥
∑
p∈P

wk+1,p,t ∀ k ∈ Kn, n ∈ N , t ∈ T (5t)

∑
p′≤p

wk′,p′,t ≥
∑
p∈P

wk,p,t ∀ k′ < k, k, k′ ∈ Kn, n ∈ N , t ∈ T (5u)

bk,p,t, wk,p,t, z
s
i,k,p,t, z

c
k,j,p,t ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J , p ∈ P, t ∈ T . (5v)

Following the same notation as in (3), the MILP master problem (5) can be concisely repre-

sented by (6).

ΦLB = min g(f, ff, z) +DᵀCff (6a)

s.t. f, ff, z, d, x, y ∈ Ω′, (6b)

where D is the vector of minimum distance parameters, D̂i,p and D̂j,p, and Ω′ represents the191

feasible region described by constraints (5f)-(5v).192

4.2. Subproblem193

After solving the master problem (5), the subproblem consists of solving (2) for the fixed194

decisions of which facilities k to build and operate at each time period t, b̂k,t and ŵk,t, respectively,195

and how to allocate their material supply ẑsi,k,t and products ẑck,j,t as selected in the MILP (5).196

Besides fixing the discrete decisions, we also update the bounds of the facilities coordinates

such that their location (xk, yk) has to lie within the bounds of the sub-region p chosen in the

Master Problem; i.e., for a p such that
∑

t∈T bk,p,t = 1 in the solution of Problem (5) we have that
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X ′k,p ≤ xk ≤ X
′
k,p and Y ′k,p ≤ yk ≤ Y

′
k,p, where:

X ′k,p = xp −∆x/2 ∀ k ∈ K (7a)

X
′
k,p = xp + ∆x/2 ∀ k ∈ K (7b)

Y ′k,p = yp −∆y/2 ∀ k ∈ K (7c)

Y
′
k,p = yp + ∆y/2 ∀ k ∈ K. (7d)

This assumption greatly impacts tractability because the bounds for di,k and dk,j, which are

part of the bilinear terms, become tighter, i.e., D′i,k,p ≤ di,k ≤ D
′
i,k,p and D′k,j,p ≤ dk,j ≤ D

′
k,j,p,

where:

D′i,k,p = D̂i,p ∀ i ∈ I, k ∈ K (8a)

D
′
i,k,p = D̂i,p +

√
∆x2 + ∆y2 ∀ i ∈ I, k ∈ K (8b)

D′k,j,p = D̂j,p ∀ j ∈ J , k ∈ K (8c)

D
′
k,j,p = D̂j,p +

√
∆x2 + ∆y2 ∀ j ∈ J , k ∈ K. (8d)

Accordingly, the McCormick convex envelopes [35] also become tighter, strengthening the lower197

bounds in the global optimization search of this NLP.198

Following the same notation as in (3) and (6), the NLP subproblem can be concisely represented199

by (9).200

ΦUB = min g(f, ff, ẑ) + dᵀCff (9a)

s.t. dl,k ≥
√

(Xl − xk)2 + (Yl − yk)2 ∀l ∈ I ∪ J , k ∈ K (9b)

f, ff, d, x, y ∈ Ω′′ (9c)

where ẑ represents the discrete decisions obtained in the solution of the Master Problem (6) and201

fixed for this Subproblem, and Ω′′ represents the feasible region Ω with the updated bounds for202

the distances and (x, y) coordinates, di,k, dk,j, and (xk, yk), respectively.203

The subproblem (9) is a reduced nonconvex NLP. Since it comprises the original problem (3)204

for a set of fixed discrete decisions and tighter bounds for the distances and (x,y) coordinates, it205

yields a feasible Upper Bound (UB) to the total cost, ΦUB ≥ Φ.206
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4.3. Facility Pruning207

There are instances, especially the ones that favor centralized networks, in which having a

large set of potential distributed facilities adds unnecessary burden to their solution. With this

in mind, we propose an additional step to the original Bilevel Decomposition [1] based on the

branch-and-bound algorithm. After solving the Master Problem and the Subproblem, this step

consists of solving the MILP (5) with the additional constraint:∑
p∈P

∑
t∈T

bk′,p,t ≥ 1 (10)

for each facility k′ that was not selected to be built by the Master Problem (5). Constraint (10)208

enforces facility k′ to be built in one of the partition during the considered planning horizon.209

ΦLB,k′ is the optimal solution of the MILP (5) with constraint (10) for facility k′. Based on this210

additional constraint, we have the following Proposition 1.211

Proposition 1. If the result of the MILP (5) plus the additional constraint (10), ΦLB,k′, is greater212

than the upper bound obtained by the NLP subproblem, it means that building this facility k′ will213

never be optimal hence it can be excluded from the set of potential facilities.214

Proof. From Proposition 1 of [1] we know that the optimal value of the MILP (5), ΦLB, is an215

underestimator of the optimal value of MINLP (2), Φ. Hence, the optimal value of the MILP (5)216

with the additional constraint (10), ΦLB,k′ , underestimates the optimal value of MINLP (2) with217

this additional requirement of forcing facility k′ to be built within the planning horizon, Φk′ .218

Moreover, from Theorem 1 of [1] we have that the optimal value of the NLP subproblem, ΦUB
219

is an incumbent (i.e. feasible solution) of the MINLP (2), such that ΦLB ≤ Φ ≤ ΦUB. Therefore,220

if ΦLB,k′ > ΦUB and ΦLB,k′ ≤ Φk′ , then Φk′ > ΦUB and, consequently, building this facility k′ will221

never be optimal. Accordingly, facility k′ can be pruned from the set of potential facilities.222

Since all facilities of the same type have exactly the same characteristics and data and the223

symmetry breaking constraint (2t) forces lower-index facilities of the same type to be build first,224

then if facility k′ is pruned, it means that all facilities k′′ such that k′′ > k′ should also be pruned225

(i.e., excluded from the set of potential facilities).226

This step can be computationally expensive; therefore we only perform it in the first iteration227

of the algorithm, and also set a maximum solution time for the solution of each ΦLB,k′ .228
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4.4. Partition Pruning229

The idea of the Partition Pruning step is very similar to the Facility Pruning. It consists of

running a set of MILPs (5) with the additional constraint:∑
k∈K

∑
t∈T

bk,p′,t ≥ 1 (11)

for each partition p′ that did not have any facility k being built on by the Master Problem (5).230

This constraint enforces that at least one facility k is built on this partition p′ during the planning231

horizon. ΦLB,p′ is the optimal solution of the MILP (5) with constraint (11) for partition p′.232

Following the same idea as before, we can establish the following Proposition 2.233

Proposition 2. If the result of the MILP (5) with the additional constraint (11), ΦLB,p′, is greater234

than the upper bound obtained by the NLP subproblem, it means that building on this partition p′235

will never be optimal and this partition and its further refinements can be excluded from the set of236

potential partitions.237

Proof. This proof is very similar to the proof of Proposition 1. Following the same logic as before238

we have that the optimal value of the MILP (5) with the additional constraint (11), ΦLB,p′ ,239

underestimates the optimal value of MINLP (2) with this additional requirement of forcing at240

least one facility to be built on partition p′, Φp′ . Therefore, knowing that ΦLB ≤ Φ ≤ ΦUB, if241

ΦLB,k′ > ΦUB and ΦLB,k′ ≤ Φk′ , we can conclude that Φk′ > ΦUB and, consequently, building a242

facility on partition p′ will never be optimal. Accordingly, partition p′ and its further refinements243

can be pruned from the set of potential facilities.244

This step can also be computationally expensive; therefore we only perform it in the first two245

iterations of the algorithm, and also set a maximum solution time for the solution of each ΦLB,p′ .246

Additional to the Partition Pruning step, we automatically prune the partitions that have247

their minimum distance to the fixed points, D̂i,p and D̂j,p, plus the diagonal size of the partition248 √
∆x2 + ∆y2 to be less than the allowed minimum distance Dmin, which means that we prune the249

partitions in which the maximum distance between them and a fixed point is less than minimum250

distance allowed, which would violate the distance bound constraints in the original MINLP (2v)251

and (2w).252
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4.5. Warm-start MILP solutions253

The solution of the MILP (5) is the main bottleneck to the solution of the Bilevel Decomposition254

algorithm because as the number of partitions increases, it greatly impacts the size of the model255

and, consequently, its solution time. In order to mitigate this issue, we warm-start the MILP256

solutions by providing to the solver a good feasible solution.257

This initial feasible solution is directly obtained from the solution of the Master Problem258

and Subproblem in the previous iteration, not requiring to solve any additional MILP primal259

heuristic [43]. This feasible solution consists of building the facilities selected on the previous260

Master Problem (at the same time period as before), and choosing for their location the partition261

corresponding to the (xk, yk) coordinates given by the previous NLP Subproblem. In case the262

NLP Subproblem builds the facility on the boundary of the partition chosen by the MILP Master263

Problem, we select for the warm-start solution the adjacent partition that shares this boundary.264

This feasible solution is provided to the MILP solver (e.g. Gurobi and CPLEX) through the265

initialize option in Pyomo.266

This step is not necessary, as we did not encounter any case in which the MILP solver could267

not find a feasible solution without the warm-start. Also, it does not reduce the computational268

time required by the MILP solver to solve the LP relaxation. However, it does provide a good269

incumbent solution that can help the convergence of the Branch-and-Bound algorithm, and expe-270

dite the overall convergence of the Accelerated Bilevel Decomposition, as can be seen in results in271

sections 4.8 and 5.272

4.6. Accelerated Algorithm273

As discussed earlier in this section, the Accelerated Bilevel Decomposition Algorithm consists274

of iteratively solving the MILP master problem and the NLP subproblem with additional steps to275

help convergence: Facility Pruning, Partition Pruning, and Warm-start of the Master Problem.276

The proposed algorithm is shown in Figure 2.277

As proved by Theorem 1 in [1], the proposed Bilevel Decomposition algorithm in Figure 2278

converges to the global optimum in a finite number of steps within an ε-tolerance.279

4.7. Relation between space discretization and optimality tolerance ε280

The lower bound of the algorithm is tightly related to how refined the discretization of space281

is in the current iteration, as the lower bound comes from the solution of the MILP (5) in which282
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Figure 2: Accelerated Bilevel Decomposition Representation
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the distance variable is underestimated as the minimum distance between the fixed points and283

each partition on the grid. Therefore, Proposition 3 finds an upper bound to the dimensions of284

the partitions in the grid, ∆∗, such that if ∆x ≤ ∆∗ and ∆y ≤ ∆∗ the algorithm will converge in285

one iteration.286

Proposition 3. By starting the Bilevel Decomposition algorithm with a specific p∗x×p∗y partitioning287

of the space such that ∆x ≤ ∆∗ and ∆y ≤ ∆∗, the algorithm converges within ε-tolerance in a288

single iteration.289

Proof. This proposition is true if by starting the Bilevel Decomposition algorithm with a parti-

tioning of the space such that ∆x ≤ ∆∗ and ∆y ≤ ∆∗, the Master Problem in iter = 1 yields an

upper bound, ΦUB, the Subproblem in iter = 1 yields a lower bound, ΦLB, and both satisfy the

optimality tolerance ΦUB − ΦLB ≤ ε. Thus, from (6) and (9) we have that:

ΦUB − ΦLB ≤ ε (12a)

g(f ∗, ff ∗, ẑ) + d∗ᵀCff ∗ − g(f̂ , f̂f , ẑ)−DᵀCf̂f ≤ ε (12b)

where the superscript ∗ denotes the optimal solution of the variables in the NLP (9), and the290

accentˆdenotes the optimal solution of the variables in the MILP (6).291

From Proposition 1 by Lara et al. [1] we know that the difference between the MINLP (2)292

and the MILP (5) is the underestimation of transportation costs by the latter. Additionally, from293

Proposition 2 of the same paper, we have that for an infinite number of partitions the MILP (5)294

becomes an exact infinite dimensional representation of the MINLP (2) and both (2) and (5) have295

the same optimal solution Φ∗ = Φ̂.296

Since the difference in the optimal value of the MINLP and its MILP underestimation is only

due to the underestimation of the bilinear term, we can fix the optimal solution for the continuous

variables f and ff to be the same between in MILP and the NLP, i.e., f ∗ = f̂ and ff ∗ = f̂f , and

this would give as a feasible solution Φfeas ≥ ΦUB. Thus, if the optimality tolerance is satisfied by

Φfeas, it is also satisfied by ΦUB. Therefore, for the sake of simplicity, we can omit the superscripts

and write that

dᵀCff −DᵀCff≤ ε (12c)∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t · (dl,k −Dl,k)≤ ε (12d)
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Since dl,m −Dl,m ≤
√

(∆x∗)2 + (∆y∗)2, if∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ·
√

(∆x∗)2 + (∆y∗)2 ≤ ε

is satisfied, then (12d) will consequently be satisfied.297

Therefore, we can write that

√
(∆x∗)2 + (∆y∗)2 ·

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤ ε (12e)

Considering an upper bound on the term multiplying the
√

(∆x∗)2 + (∆y∗)2, we denote it with298

the accent. If the following condition is satisfied,299

√
(∆x∗)2 + (∆y∗)2 ·

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤ ε (12f)

then we can ensure that (12d) is satisfied.300

Going back to the original (not concise) representation:

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t =
∑
t∈T

1

(1 +R)t

∑
k∈K

(∑
i∈I

V TCs
i,k,t · ff s

i,k,t +
∑
j∈J

V TCc
k,j,t · ff c

k,j,t

)
(12g)

We can then take the maximum of the variable transportation costs over the facilities k ∈ K

such that V TCs
i,t = maxk∈K V TC

s
i,k,t, and V TCc

j,t = maxk∈K V TC
c
k,j,t, and substitute these

parameters back into (12g):

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

(∑
i∈I

V TCs
i,t

∑
k∈K

ff s
i,k,t +

∑
j∈J

V TCc
j,t

∑
k∈K

ff c
k,j,t

)
(12h)

Combining (12h) with constraint (2k) we can rewrite (12h) as follows

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

(∑
i∈I

V TCs
i,t

∑
k∈K

ff s
i,k,t +

∑
j∈J

V TCc
j,tDMj,t

)
(12i)

and the only remaining variable is ff s
i,k,t.301

Now, we can also take maximum value of the variable transportation cost over suppliers i such

that V TCs
t = maxi∈I V TCs

i,t. Using this new parameter combined with constraints (2i) and (2k),

and knowing that CVk represents the conversion of facility k thus it is a fraction number between
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[0, 1] considering its minimum CV = mink∈K CVk, we can rewrite (12i) as follows

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

(
V TCs

t

∑
k∈K

∑
i∈I

ff s
i,k,t +

∑
j∈J

V TCc
j,tDMj,t

)
(12j)

≤
∑
t∈T

1

(1 +R)t

(
V TCs

t

∑
k∈K

fk,t
CVk

+
∑
j∈J

V TCc
j,tDMj,t

)
(12k)

≤
∑
t∈T

1

(1 +R)t

(
V TCs

t

∑
k∈K fk,t

mink∈K CVk
+
∑
j∈J

V TCc
j,tDMj,t

)
(12l)

≤
∑
t∈T

1

(1 +R)t

(
V TCs

t

CV

∑
j∈J

DMj,t +
∑
j∈J

V TCc
j,tDMj,t

)
(12m)

With this result, we can go back to (12f) and rewrite it as:

√
(∆x∗)2 + (∆y∗)2 ≤ ε∑

t∈T
1

(1+R)t

(
V TCs

t

CV

∑
j∈J DMj,t +

∑
j∈J V TC

c
j,tDMj,t

) (12n)

The last step can be applied since the costs and flows are positive, not affecting the sign of the

inequality. Therefore, for ∆∗ = max(∆x∗, ∆y∗), we can write

∆∗ ≤ ε
√

2
∑

t∈T
1

(1+R)t

(
V TCs

t

CV

∑
j∈J DMj,t +

∑
j∈J V TC

c
j,tDMj,t

) (12o)

Hence, if the user selects a partitioning of the space p∗x × p∗y such that ∆x ≤ ∆∗ and ∆y ≤ ∆∗302

and ∆∗, and ∆∗ is bounded by above as in (12o), then the Bilevel Decomposition algorithm303

converges in the first step. This means that the solution of the Master Problem in iter = 1 and304

the Subproblem in iter = 1 yield bounds that satisfy the optimality tolerance ΦUB−ΦLB ≤ ε.305

4.8. Illustrative Example306

We illustrate how the algorithm works by solving a test-case using Network 2 from [1], with307

facility types 1 and 2 (centralized and distributed, respectively), 5 time-periods, 10% increase in308

demand by time period, and interest factor R = 0.01, and optimality tolerance of ε = 1%. We309

start iter = 1 with a px = 2 and py = 2 partition of the space, as shown in Fig. 3.310

By solving the Master Problem (5) for this grid, we get a LB1 = 144, 712, and a solution that311

builds one centralized facility (type 1), k = cf1, on partition p = 2 at time period t = 1 and312

keeps it operating throughout the planning horizon. We then solve Subproblem (9) for these fixed313

discrete decisions and obtain a solution that builds facility k = cf1 on coordinate (46.51, 70.76),314
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Figure 3: Illustrative problem: iteration 1 (px = 2, py = 2)

yielding a feasible upper bound of UB1 = 149, 236, and an optimality gap of 3%. This gap is315

higher than the optimality tolerance, hence we proceed with the algorithm.316

Since this is the first iteration, we perform the Facility Pruning step. We start by the second317

centralized facility k = cf2 which was not built by the Master Problem. By solving the MILP (5)318

with the additional constraint (10), which enforces that k = cf2 is built, we get ΦLB,cf2 = 150, 135319

which is higher than the current UB1, thus we can prune k = cf2 and know that the optimal320

solution does not have more than one centralized facility. We then continue to solve the Facility321

Pruning step for the distributed facilities. We start by solving the MILP with the additional322

constraint (10) for k = df1 and get ΦLB,df1 = 144, 751, which is lower than the current UB1, thus323

cannot be pruned. We continue doing the same for k = df2 and get ΦLB,df2 = 146, 267, which is324

still lower than the UB1. We then perform the same step for k = df3 and get ΦLB,df3 = 150, 168,325

which is higher than UB1, thus we can prune k = df3 and all the remaining distributed facilities,326

and know that the optimal solution does not have more than two distributed facilities.327

The next step is to solve the Partition pruning. We solve the MILP (5) with the additional328

constraint (11) for p = {1, 3, 4}, and the results are shown in Table 1. Since none of the ΦLB,p
329

were higher than UB1 = 149, 236, we cannot prune any partition in this iteration. We proceed330

then to iter = 2, with px = 4 and py = 4 partition of the space, as represented in Fig. 4, keeping331

the updated set of potential facilities after pruning.332

Based on the solution of the Master Problem and Subproblem for iteration 1, and the mapping333
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Figure 4: Illustrative problem: iteration 2 (px = 4, py = 4)

between partitions in iterations 1 and 2, we warm-start the Master Problem MILP (5) with an334

initial feasible solution of building k = cf1 on partition p = 7. The solution yields LB2 = 146, 482,335

and a solution that builds one centralized facility (type 1), k = cf1, on partition p = 11 at time336

period t = 1 and keeps it operating throughout the planning horizon. We then solve Subproblem337

(9) for these fixed discrete decisions and get a solution that builds facility k = cf1 on coordinate338

(50.00, 69.97), yielding a feasible that is higher than the previous upper bound, so we keep UB2 =339

149, 236. The optimality gap is now 2%, which is still higher than the optimality tolerance of 1%.340

The following step is to solve the Partition pruning for the current grid. Since the Subproblem341

builds facility k = cf1 on the boundary between partitions p = 7 and p = 11, we consider both of342

them as active and exclude them of the list of partitions to perform the Partition Pruning step.343

We solve the MILP (5) with the additional constraint (11) for p = {1, . . . , 16} \ {7, 11} and the344

respective results are shown in Table 1. Based on the results we can prune the current partitions345

p = {13, 14, 16} and their further refinements.346

We proceed to iter = 3, with px = 8 and py = 8 partition of the space, as represented in Fig. 5.347

All partitions marked with a stripped pattern were pruned in the previous iteration.348

Using the solution of the Master Problem and Subproblem for iteration 2, and the mapping349

between partitions in iterations 2 and 3, we warm-start the Master Problem MILP (5) with an350

initial feasible solution of building k = cf1 on partition p = 30. The solution yields LB3 = 147, 805,351

and a solution that builds one centralized facility (type 1), k = cf1, on partition p = 38 at time352
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Table 1: Partition Pruning step results (numbers in bold correspond to partitions that were pruned in the respective

iteration)

Iteration 1 Iteration 2

UB1 = 149, 236 UB2 = 149, 236

Partition p ΦLB,p ΦLB,p

1 146,845 148,146

2 - 147,964

3 144,828 148,146

4 144,828 148,892

5 148,093

6 147,452

7 -

8 146,781

9 149,364

10 147,828

11 -

12 146,994

13 150,531

14 149,646

15 148,688

16 149,691

period t = 1 and keeps it operating throughout the planning horizon. We then solve Subproblem353

(9) for these fixed discrete decisions and obtain a solution that builds facility k = cf1 on coordinate354

(50.00, 69.97), yielding a feasible that is higher than the previous upper bound, so we keep UB2 =355

149, 236. The optimality gap is now 0.96%, which is lower than the optimality tolerance of 1%,356

therefore the algorithm has converged. The lower bound, upper bound and optimality gap at each357

iteration are reported in Table 2.358

As one can see, the lower bound gradually tightens up as the number of iterations iter, and359

consequently the number of partitions increase. The optimal network is shown in Figure 6. It360

takes 192 seconds to solve this instance on a macOS 2.3 GHz Intel Core i5, using Gurobi 8.0.1361
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Figure 5: Illustrative problem: iteration 3 (px = 8, py = 8)

Table 2: Illustrative test problem results

iter Lower Bound Upper Bound Gap

1 144,712 149,236 3%

2 146,482 149,236 2%

3 147,805 149,236 1%

to solve the MILPs (optimality tolerance of 0.01% for each MILP) and BARON 18.5.8 to solve362

the nonconvex NLP (time limit of 30 seconds per NLP). For the Facility Pruning and Partition363

Pruning steps, we limit the solution time of the MILPs to 10 seconds.364

To evaluate the impact of each of the proposed steps, we solve the same instance using the365

Accelerated Bilevel decomposition: (i) without the Facility Pruning step, which takes 2770 seconds;366

(ii) without the Partition Pruning Step, which takes 211 seconds; and (iii) without the Warm-start367

step, which takes 196 seconds. This shows the proposed additional steps have an additive effect368

of the performance of the algorithm, and that the Facility pruning is the step with the greatest369

impact in the performance for this instance.370

It takes 2,778 seconds to solve this same instance with the previous Bilevel Decomposition371

proposed by [1] using the same px, py, nx and ny. Additionally, BARON 18.5.8 takes 1,835 seconds372

to solve the original nonconvex MINLP (2) for this instance, while SCIP 5.0 and ANTIGONE 1.1373

cannot solve it in 3,600 seconds (remaining optimality gaps of 2% and 4%, respectively).374
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Figure 6: Illustrative problem optimal network

By using Proposition 3, we get that if we start with px, py ≥ 20 we have guaranteed convergence375

within 1% in the first iteration. This is considerably more refined than the px, py = 8 needed for376

the algorithm to converge, showing that even though Proposition 3 provides a valid bound, it is377

loose for this case, thus using it may add an unnecessary burden to the solution of the algorithm.378

5. Computational results379

In order to compare the performance of our proposed accelerated algorithm with the original380

algorithm and the currently available general purpose global optimization solvers, we 10 test cases381

from [1]. The network varies in size as follows.382

• Network 1: 2 suppliers × 2 consumers;383

• Network 2: 5 suppliers × 5 consumers;384

• Network 3: 10 suppliers × 10 consumers;385

• Network 4: 20 suppliers × 20 consumers;386

• Network 5: 40 suppliers × 40 consumers;387

The 5 network structures are represented in Figures 7-11.388

For each of the network options, we use as centralized facilities the Type 1 facilities from Lara389

et al. [1] (up to 2 large-scale facilities); and as distributed facilities, we first use Type 2 (up to 10390
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Figure 7: Network 1 Figure 8: Network 2

Figure 9: Network 3 Figure 10: Network 4

mid-scale facilities) and then Type 3 (up to 20 small-scale facilities). Therefore, for each of the391

network structures, the problem was solved for 12 and 22, respectively.392

We assume that all instances are solved for 5 time periods, and the product demand and393

availability of raw material have a 10% increase per time-period.394

Each test case is solved using the Accelerated Bilevel Decomposition (Fig 2), the original Bilevel395

Decomposition [1], and by general purpose global optimization solvers, BARON, ANTIGONE396

and SCIP. We set the optimality tolerance to 2% and the maximum total CPU time to 1 hour.397
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Figure 11: Network 5

Regarding the algorithm, it is required that the Master Problem is solved to 0.5% optimality gap398

(and we use the lower bound of the MILP as the lower bound in the algorithm), and it is allowed399

a maximum CPU time of 30 seconds for the solution of each NLP Subproblem. We start the400

algorithm with a 2× 2 partitioning of the space and at each iteration this partitioning is doubled,401

i.e Nx, Ny = 2.402

Our computational tests were performed on a MacBook Pro laptop with a 2.3 GHz Intel Core403

i5, with 8GB of RAM, running on MacOS Mojave. We implemented the monolithic formulation404

and the global optimization algorithm in Python/Pyomo [44], solving the MILPs using Gurobi405

version 8.0.1 [45], the NLPs using BARON version 16.3.4 [46], and the MINLPs using BARON406

version 18.5.8 [46], ANTIGONE 1.1 [47], and SCIP 5.0 [48]. Source code reproducing our results407

is on Github [49].408

The case-studies are named such that the first 2 letters represent the network (i.e., N1, N2,409

N3, N4, and N5, represent Network 1, 2, 3, 4, and 5, respectively), and the last 2 letters represent410

the facility types considered (i.e., T1T2 and T1T3 represent types 1 and 2, and types 1 and 3,411

respectively). The size of monolithic MINLP formulation (2) for each of the test cases is shown in412

Table 3.413

The performance curves for the Accelerated Bilevel Decomposition, the original Bilevel De-414

composition from [1] and each of the global solvers are shown in Figure 12.415

The results show that the Accelerated Bilevel Decomposition algorithm was able to find the416

26



Table 3: Monolithic MINLP formulation size

Binary Variables Continuous Variables Constraints

N1-T1T2 360 393 1,265

N2-T1T2 720 825 2,087

N3-T1T2 1,320 1,545 3,457

N4-T1T2 2,520 2,985 6,197

N5-T1T2 4,920 5,865 11,677

N1-T1T3 660 703 2,925

N2-T1T3 1,320 1,495 4,407

N3-T1T3 2,420 2,815 6,877

N4-T1T3 4,620 5,455 11,817

N5-T1T3 9,020 10,735 21,697

Figure 12: Performance curves comparing the Accelerated Bilevel Decomposition algorithm, with its original version

and the commercial global optimization solvers.
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optimal solution within 2% optimality tolerance in 70% of the case studies, and performed better417

(i.e. found the optimal faster) than the other options in all of them. It can be noticed that there418

was a noticeable improvement in performance between the original Bilevel Decomposition and419

Our Accelerated version of it, being able to solve 7 out of 10 instances instead of 5 out of 10. The420

global optimization solver that had the best performance for this problem and these instances was421

BARON. SCIP and ANTIGONE had a similar performance, only being able to solve 2 out of the422

10 instances.423

To evaluate the impact of each of the proposed steps, we solve these same 10 instances using the424

Accelerated Bilevel decomposition: (i) without the Facility Pruning step, (ii) without the Partition425

Pruning Step, and (iii) without the Warm-start step. The performance curves comparing these426

options against the proposed Accelerated Bilevel decomposition are shown in Figure 13.427

Figure 13: Performance curves comparing the Accelerated Bilevel Decomposition algorithm, with versions without

Facility Step, Partition Pruning Step and Warm-start.

The results show that for the smaller instances the absence of each additional step did not have428

a great impact on performance. However, for larger instances each additional step was necessary429
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to allow the solution of 7 instances. The algorithm without the Partition Pruning and without430

the Warm-Start could only solve 6 instances within 1 hour, and the algorithm without the Facility431

Pruning could only solve 5 instances within 1 hour, which shows that this is the step with the432

greatest impact in the performance. It is interesting to note that for smaller instances not having433

the Partition Pruning Step reduces the solution time, which makes sense since this can be a time434

consuming step that hurts the performance of easy instances.435

6. Biomass supply chain case study436

We present a bioethanol case study, adapted from the literature [16, 4], to illustrate a real-437

world application for the proposed model and solution strategy. Given are 10 switchgrass suppliers438

and 10 ethanol markets with locations that are represented in Figure 14. There are 12 potential439

facilities to be built, of which 10 are distributed (MC = 40.4 MGal/year) and 2 are centralized440

facilities (MC = 404 MGal/year). All of the facilities have a conversion of CVk = 26%. Each441

market has a demand of 40 MGal of ethanol in the first year, with a 10% increase in demand442

each of the following years. Each supplier has 500 kilotonnes/year of switchgrass available, with443

a cost of $30/ton, $35/ton, $33/ton, $32/ton, $37/ton, $40/ton, $34/ton, $35/ton, $31/ton and444

$39/ton for suppliers 1 to 10, respectively. The fixed transportation costs (FTCi,k,t, FTCk,j,t)445

are $10,000/year for all the possible links, and the variable transportation costs are $2/ton-mile446

for the switchgrass (V TCi,k,t) and $0.40E-3/gal-mile for the ethanol (V TCk,j,t). We solve this447

problem for a 5-year planning horizon.448

The resulting model has 3,457 constraints, 1,545 continuous variables, and 1,320 binary vari-449

ables. Starting with px, py = 5 and Nx, Ny = 2 it takes 3 iterations and 6 hours to solve it with450

the Accelerated Bilevel Decomposition within 2% optimality gap, with an optimal value of $2.178451

billion. We attempted to solve this same instance with BARON (the commercial global solver that452

has the best performance in the computational experiments in Section 5), but it only achieved453

68% optimality gap when it reached the maximum solution time of 10 hours, highlighting again454

the need for a specialized algorithm such as the proposed Accelerated Bilevel Decomposition to455

be able to solve real-world applications of this problem.456

The optimal network for the biomass supply chain problem is shown in Figure 15 (without457

the allocation links since it changes according to the time period). All the 10 distributed facilities458

were built in year 1, and one centralized facility was built in year 2. It is interesting to notice that459
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Figure 14: Network structure of the biomass supply chain [16]

in some cases the optimization decides to build 2 distributed modular plants right next to each460

other instead of replacing them with a larger-scale centralized plant.461

Figure 15: Optimal network for the biomass supply chain
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7. Conclusions462

This paper has highlighted the need for a general model to optimize the design and planning463

of Distributed and/or Centralized manufacturing networks. We propose a GDP formulation to464

solve this problem, which belongs to the class of Capacitated Multi-facility Weber Problem.465

We show that with the added complexity of having multi-period decisions the original Bilevel466

Decomposition proposed by [1] and the available global optimization solvers (BARON, ANTIGONE467

and SCIP) do not perform well, taking a long time to find feasible solutions and an acceptable468

optimality gap. Therefore, we propose an accelerated version of the Bilevel Decomposition with469

additional steps: Facility Pruning, Partition Pruning and Warm-start of the Master Problem. The470

additional steps do not compromise the rigorousness of the algorithm, which still has ε-convergence471

as proven in [1]. We discuss theoretical properties of the algorithm and find an upper bound to472

the space discretization such that if the space is partitioned in any finer grid, the algorithm is473

guaranteed to converge in a single iteration.474

Additionally, we perform computational experiments for the multi-period version of the random475

instances from [1], and show that the proposed Accelerated Bilevel Decomposition outperforms476

the original Bilevel Decomposition proposed by [1] and the available global optimization solvers477

(BARON, ANTIGONE and SCIP) in all the instances. Finally, we illustrate the applicability of478

the model and algorithm by solving a biomass supply chain problem from the literature.479
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